• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 5, Pages: 409-417

Original Article

A Hybrid Burst Assembly Algorithm Based on Transition Count Number for OBS Network

Received Date:27 October 2023, Accepted Date:05 January 2024, Published Date:23 January 2024


Background: Optical transport has emerged as a candidate solution to cope with the rising data transmission challenges of enormously evolving data. In Optical Burst Switching (OBS) networks, determining an adaptive burst size is a difficult task that must be performed efficiently during burst assembling. Methods: This research proposes a hybrid burst assembly algorithm that determines the optimal burst size during the burst creation time. The proposed algorithm uses the Transition Count Number (TCN) based method to maintain the optimal burst size when the incoming traffic is unpredictable. The efficiency of the proposed approach is investigated in terms of queuing delay, burst utilization, burst size, and burst size consistency. Findings: Three types of traffic variations (H = 0.5, H = 0.6, and H = 0.7) are imposed to evaluate the performance of the proposed burst assembly approach. As compared to the E-hybrid (time/length) strategy, the research outcomes demonstrate a 13.15% reduction in average queuing latency and a 21.26% improvement in average burst utilization. Novelty: A new burst assembly approach (hybrid burst assembly) has been proposed for OBS networks.

Keywords: Burst assembly, Optical Burst Switching (OBS), burstification, burst consistency


  1. Andrews D, Bademci B, Adibi N, Whitehead B, Ye Z, Kerwin K, et al. The Circular Data Centre Compass – modelling and assessing data centre sustainability. In: E3S Web of Conferences: 10th International Conference on Life Cycle Management (LCM 2021). (Vol. 349, pp. 1-6) EDP Sciences. 2022.
  2. Singh A, Aujla GS, Bali RS. Container-based load balancing for energy efficiency in software-defined edge computing environment. Sustainable Computing: Informatics and Systems. 2021;30:100463. Available from: https://doi.org/10.1016/j.suscom.2020.100463
  3. Singh S, Singh S, Kaur B, Singh A. Contention avoidance scheme using machine learning inspired deflection routing approach in optical burst switched network. International Journal of Communication Systems. 2022;p. 1–14. Available from: https://doi.org/10.1002/dac.5352
  4. Garg AK, Kaler RS. Comparison analysis of optical burst switched network architectures. Optik. 2010;121(15):1412–1417. Available from: https://doi.org/10.1016/j.ijleo.2009.02.010
  5. Poorzare R, Abedidarabad S. A Brief Review on the Methods that Improve Optical Burst Switching Network Performance. Journal of Optical Communications. 2023;44(4):457–465. Available from: https://doi.org/10.1515/joc-2019-0092
  6. Kavitha V, Palanisamy V. New burst assembly and scheduling technique for optical burst switching networks. Journal of Computer Science. 2013;9(8):1030–1040. Available from: https://doi.org/10.3844/jcssp.2013.1030.1040
  7. Le VH, Vo VMN. A Combined Delay-Throughput Fairness Model for Optical Burst Switched Networks. Journal of Information and Communication Technology. 2023;22(2):183–205. Available from: https://doi.org/10.32890/jict2023.22.2.2
  8. Poorzare R, Calveras A, Abedidarabad S. An improvement over TCP Vegas to enhance its performance in optical burst switching networks. Optical Review. 2021;28(2):215–226. Available from: https://doi.org/10.1007/s10043-021-00652-w
  9. Kumar VKA, Reddy KS, Prasad MN. Review of contemporary literature on burst assembling and routing strategies in OBS networks. Journal of Optics . 2018;47(3):324–331. Available from: https://doi.org/10.1007/s12596-018-0454-1
  10. Le VH, Nguyen HQ, Dang TC, Vo VMN. A model of service differentiation burst assembling and padding for improving transmission efficiency in OBS networks . Turkish Journal of Electrical Engineering & Computer Sciences. 2021;29(7):3133–3149. Available from: https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=1035&context=elektrik
  11. Kosmatos E, Matrakidis C, Uzunidis D, Stavdas A, Horlitz S, Pfeiffer T, et al. Real-time orchestration of QoS-aware end-to-end slices across a converged Metro and Access network exploiting burst-mode technology. Journal of Optical Communications and Networking. 2023;15(1):1–15. Available from: https://doi.org/10.1364/JOCN.464107
  12. Eramo V, Listanti M, Pacifici P. A comparison study on the number of wavelength converters needed in synchronous and asynchronous all-optical switching architectures. Journal of Lightwave Technology. 2003;21(2):340–355. Available from: https://doi.org/10.1109/JLT.2003.808790
  13. Kane K, Bell S, Capps N, Garrison B, Shapovalov K, Jacobsen G, et al. The response of accident tolerant fuel cladding to LOCA burst testing: A comparative study of leading concepts. Journal of Nuclear Materials. 2023;574:154152. Available from: https://doi.org/10.1016/j.jnucmat.2022.154152
  14. Yao S, Xue F, Mukherjee B, Yoo SJB, Dixit S. Electrical ingress buffering and traffic aggregation for optical packet switching and their effect on TCP-level performance in optical mesh networks. IEEE Communications Magazine. 2002;40(9):66–72. Available from: https://doi.org/10.1109/MCOM.2002.1031831
  15. Kaur H, Singh S. Prevention of DDOS in Optical Burst Switching using Genetic Algorithm. Indian Journal of Science and Technology. 2016;9(36):1–8. Available from: https://dx.doi.org/10.17485/ijst/2016/v9i36/101461
  16. Xiong Y, Vandenhoute M, Cankaya HC. Control architecture in optical burst-switched WDM networks. IEEE Journal on Selected Areas in Communications . 2000;18(10):1838–1851. Available from: https://doi.org/10.1109/49.887906
  17. Xue X, Zhang S, Guo B, Ji W, Yin R, Chen B, et al. Optical Switching Data Center Networks: Understanding Techniques and Challenges. 2023. Available from: https://doi.org/10.48550/arXiv.2302.05298
  18. Li X, Yuan J, Zhang Q, Zhang J. A positive–negative delayer for slotted OBS networks to enhance two-way signaling scheme. Telecommunication Systems. 2019;71(1):111–120. Available from: https://doi.org/10.1007/s11235-018-0501-x
  19. Vo VMN, Le VH, Nguyen HS, Le MT. A model of QoS differentiation burst assembly with padding for improving the performance of OBS networks. Turkish Journal of Electrical Engineering and Computer Sciences. 2018;26(4):1783–1795. Available from: https://journals.tubitak.gov.tr/elektrik/vol26/iss4/9/


© 2024 Singh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.