• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 15, Pages: 1219-1232

Original Article

A novel cellulolytic system from Aspergillus flavipes for lignocellulosic bio-conversion

Received Date:09 February 2021, Accepted Date:21 March 2021, Published Date:03 May 2021

Abstract

Background/Objectives: The importance of enzymatic bioconversion of cellulose cannot be understated and enzyme systems which complement existing enzymes, with broad ranges of pH and temperatures and hydrolyze cellulose synergistically with other enzymes are required for bioconversions. The study was undertaken to isolate and characterize cellulolytic organisms. Methodology: Isolation of cellulolytic strains from soil samples with degrading cellulosic wastes, screening and species level identification of Fungal strain was conducted. Stability of the enzyme systems over different pH and temperature and purification study of enzymes were carried out. Results: Fungal isolate, which exhibited 0.08 IU of filter paper (FP) activity, 0.33 IU of Carboxy methyl cellulose (CMC) activity and 15IU of xylanase activity was selected and identified as Aspergillus flavipes. Purification by ion exchange chromatography and gel filtration chromatography yielded a typical endoglucanase, a fraction showing activity with both avicel and caboxy mthyl cellulase(CMC) and a third fraction against CMC and avicel. GPC of third fraction showed that the enzymes had cross reactivity to the substrates used. Conclusion: Our study proved that Aspergillus flavipes is capable of degrading lignocellulose and its FP activity and CMC activity was higher than other isolates and was comparable to enzymes of a standard strain T. koninjii. To our knowledge this study is the first detailed report of a system of cellulases, suitable for saccharification of lignocellulosic biomass alone or synergistically with other enzymes produced by Aspergillus flavipes.

Keywords: Filter paper activity; CMC; glucosidase; endoglucanase; pNPG; lignocellulosic b saccharification

References

  1. Chandel AK, Chandrasekhar G, Silva MB, Silva SSd. The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology. 2012;32(3):187–202. Available from: https://dx.doi.org/10.3109/07388551.2011.595385
  2. Fan LT, Gharpuray MM, Lee YH. Cellulose Hydrolysis, Biotechnology Monographs. (Vol. 3, pp. 1-198) Springer-Verlag Berlin Heidelberg. Springer Science & Business Media. 1987. 10.1007/978-3-642-72575-3
  3. Jalak J, Kurašin M, Teugjas H, Väljamäe P. Endo-exo Synergism in Cellulose Hydrolysis Revisited*. Journal of Biological Chemistry. 2012;287(34):28802–28815. Available from: https://dx.doi.org/10.1074/jbc.m112.381624
  4. Ariffin H, Abdullah N, Kalsom MU, Shirai Y, Hassan Y. Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol. 2006;3(1):47–53.
  5. Juturu V, Wu JC. Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews. 2014;33:188–203. Available from: https://dx.doi.org/10.1016/j.rser.2014.01.077
  6. Sukumaran RK, Singhania RR, Pandey A. Microbial cellulases - Production, applications and challenges. Journal of Scientific and Industrial Research. 2005;64(11):832–844. Available from: http://hdl.handle.net/123456789/5375
  7. Sharrock KR. Cellulase assay methods: a review. Journal of Biochemical and Biophysical Methods. 1988;17(2):81–105. Available from: https://dx.doi.org/10.1016/0165-022x(88)90040-1
  8. Ghose TK. Measurement of cellulase activities. Pure and Applied Chemistry. 1987;59(2):257–268. Available from: https://dx.doi.org/10.1351/pac198759020257
  9. Wood TM, Bhat KM. Methods for measuring cellulase activities. Methods in enzymology. 1988;160:87–112. Available from: https://doi.org/10.1016/0076-6879(88)60109-1
  10. Mandels M, Weber J, Parizek R. Enhanced cellulase production by a mutant of Trichoderma viride. Applied microbiology. 1971;21(1):152.
  11. Onions A, Allsopp D, Eggins H. Smith’s introduction to Industrial Mycology. (p. 398) Edward Arnold, London. 1981.
  12. Domsch KH, Gams W, Anderson TH. Compendium of soil fungi. (Vol. 1) London. Academic Press Ltd. 1980.
  13. Champreda V, Mhuantong W, Lekakarn H, Bunterngsook B, Kanokratana P, Zhao XQ, et al. Designing cellulolytic enzyme systems for biorefinery: From nature to application. Journal of Bioscience and Bioengineering. 2019;128(6):637–654. Available from: https://dx.doi.org/10.1016/j.jbiosc.2019.05.007
  14. Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme research. 2011;p. 1–10. Available from: https://doi.org/10.4061/2011/280696
  15. Sadhu S, Maiti TK. Cellulase production by bacteria: a review. British Microbiology Research Journal. 2013;3(3):235–258. Available from: https://doi.org/10.9734/BMRJ/2013/2367
  16. Pinar O, Karaosmanoğlu K, Sayar NA, Kula C, Kazan D, Sayar AA. Assessment of hazelnut husk as a lignocellulosic feedstock for the production of fermentable sugars and lignocellulolytic enzymes. 3 Biotech. 2017;7(6):367. Available from: https://doi.org/10.1007/s13205-017-1002-4
  17. Milala M, Shugaba A, Gidado A, Ene A, Wafar J. Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Research journal of agriculture and biological sciences. 2005;1(4):325–333.
  18. Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL. Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Applied and environmental microbiology. 1995;61(4):1399–1407. Available from: https://dx.doi.org/10.1128/aem.61.4.1399-1407.1995
  19. Yun SI, Jeong CS, CDK, Choi HS. Purification and some properties of a β-glucosidase from Trichoderma harzianum type C-4. Bioscience, biotechnology, and biochemistry. 2001;65(9):2028–2060. Available from: https://doi.org/10.1271/bbb.65.2028
  20. Enari TM, Niku-paavola ML. Enzymatic Hydrolysis of Cellulose: is the Current Theory of the Mechanisms of Hydrolysis Valid? Critical Reviews in Biotechnology. 1987;5(1):67–87. Available from: https://dx.doi.org/10.3109/07388558709044153
  21. Hoshino E, Sasaki Y, Mori K, Okazaki M, Nisizawa k, Kanda T. Electron Microscopic Observation of Cotton Cellulose Degradation by Exo- and Endo-Type Cellulases from Irpex lacteus. The Journal of Biochemistry. 1993;114(2):236–245. Available from: https://dx.doi.org/10.1093/oxfordjournals.jbchem.a124160
  22. Kim DW, Jeong YK, Jang YH, Lee JK. Purification and characterization of endoglucanase and exoglucanase components from Trichoderma viride. Journal of fermentation and bioengineering. 1994;77(4):363–369. Available from: https://doi.org/10.1016/0922-338X(94)90005-1
  23. Li X, Lin W, Gao P, Chen F. Endoglucanase S, a novel endocellulase exhibiting exoglucanase activity from a newly isolated Streptomyces sp. LX. Journal of Applied Microbiology. 1998;85(2):347–356. Available from: https://dx.doi.org/10.1046/j.1365-2672.1998.00518.x
  24. Naika GS, Kaul P, Prakash V. Purification and Characterization of a New Endoglucanase fromAspergillus aculeatus. Journal of Agricultural and Food Chemistry. 2007;55(18):7566–7572. Available from: https://dx.doi.org/10.1021/jf070710p

Copyright

© 2021 Dina et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.