• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 26, Pages: 1324-1335

Original Article

A Novel Classification Methodology for Thyroid Cancer using C4.5 with Firefly Optimization Algorithm (CFOA)

Received Date:09 May 2022, Accepted Date:06 June 2022, Published Date:14 July 2022


Objectives: The main objective of this research is to detect thyroid cancer in its early stages and to improve the accuracy using a novel method C4.5 with Firefly Optimization Algorithm (CFOA). This research also focuses on developing an effective machine learning-based accurate prediction model. Methods: The images in this investigation are associated to thyroid disorder with 4672 samples of people including both females and males having hypothyroidism and hyperthyroidism, as well as healthy people without thyroid disorder. The data was gathered for one year with the primary goal of classifying thyroid disease using machine learning (ML) algorithms. These data comprise of Gender, Age, Thyroid hormone (T4), Triiodothyronine (T3), Thyroid stimulating hormone (TSH), etc. The performance of this proposed method was measured using parameters such as accuracy, precision, F1-score and recall. Findings: The performance of this proposed method was assessed with the state-ofthe- art existing methods like Naive Bayes (NB) algorithm, K-Nearest Neighbor (KNN) Algorithm and Adaboost. The proposed algorithm showed maximum precision of 0.9935, recall of 0.9971, F1-score of 0.9951 and accuracy of 0.9981 respectively when compared with the existing algorithms. Novelty: A novel algorithm C4.5 with Firefly Optimization Algorithm was proposed in this paper to speed-up and to increase the effectiveness of the machine learning algorithm. Moreover, this study focuses on developing an accurate prediction model by comparing classification algorithms based on accuracy and confusion matrices and then identifying the most effective classifier based on performance.

Keywords: Thyroid cancer; Classification technique; Hypothyroidism; Hyperthyroidism; Accuracy; Precision; F1score; Recall


  1. Vasile CM, Udriștoiu AL, Ghenea AE, Popescu M, Gheonea C, Niculescu CE, et al. Intelligent Diagnosis of Thyroid Ultrasound Imaging Using an Ensemble of Deep Learning Methods. Medicina. 2021;57(4):395. Available from: https://doi.org/10.3390/medicina57040395
  2. Hu M, Asami C, Iwakura H, Nakajima Y, Sema R, Kikuchi T, et al. Development and preliminary validation of a machine learning system for thyroid dysfunction diagnosis based on routine laboratory tests. Communications Medicine. 2022;2(1). Available from: https://doi.org/10.1038/s43856-022-00071-1
  3. Zhang X, Lee VCS, Rong J, Liu F, Kong H. Multi-channel convolutional neural network architectures for thyroid cancer detection. PLOS ONE. 2022;17(1):e0262128. Available from: https://doi.org/10.1371/journal.pone.0262128
  4. Yadav DC, Pal S. Performance based Evaluation ofAlgorithmson Chronic Kidney Disease using Hybrid Ensemble Model in Machine Learning. Biomedical and Pharmacology Journal. 2021;14(3):1633–1645. Available from: https://dx.doi.org/10.13005/bpj/2264
  5. Sparano C, Verdiani V, Pupilli C, Perigli G, Badii B, Vezzosi V, et al. Choosing the best algorithm among five thyroid nodule ultrasound scores: from performance to cytology sparing—a single-center retrospective study in a large cohort. European Radiology. 2021;31:5689–5698. Available from: https://doi.org/10.1007/s00330-021-07703-5
  6. Dharamkar B, Saurabh P, Prasad R, Mewada P. An Ensemble Approach for Classification of Thyroid Using Machine Learning. In: HD, PP, Rautaray S, KC L, ., eds. Advances in Intelligent Systems and Computing. (Vol. 1119, pp. 13-22) Springer Singapore. 2020.
  7. Marques G, Ferreras A, Torre-Diez IDL. An ensemble-based approach for automated medical diagnosis of malaria using EfficientNet. Multimedia Tools and Applications. 2022. Available from: https://doi.org/10.1007/s11042-022-12624-6
  8. Zhang X, Lee VCS, Rong J, Liu F, Kong H. Multi-channel convolutional neural network architectures for thyroid cancer detection. PLOS ONE. 2022;17(1):e0262128. Available from: https://doi.org/10.1371/journal.pone.0262128
  9. Cordes M, Götz TI, Lang EW, Coerper S, Kuwert T, Schmidkonz C. Advanced thyroid carcinomas: neural network analysis of ultrasonographic characteristics. Thyroid Research. 2021;14(1):16. Available from: https://doi.org/10.1186/s13044-021-00107-z
  10. Jha R, Bhattacharjee V, Mustafi A. Increasing the Prediction Accuracy for Thyroid Disease: A Step Towards Better Health for Society. Wireless Personal Communications. 2022;122(2):1921–1938. Available from: https://doi.org/10.1007/s11277-021-08974-3
  11. Yazdani A, Varathan KD, Chiam YK, Malik AW, Ahmad WAW. A novel approach for heart disease prediction using strength scores with significant predictors. BMC Medical Informatics and Decision Making. 2021;21(1). Available from: https://doi.org/10.1186/s12911-021-01527-5
  12. Nayak J, Naik B, Dinesh P, Vakula K, Dash PB. Firefly Algorithm in Biomedical and Health Care: Advances, Issues and Challenges. SN Computer Science. 2020;1(6):311.
  13. Rehman HAU, Lin CYY, Mushtaq Z, Su SF. Performance Analysis of Machine Learning Algorithms for Thyroid Disease. Arabian Journal for Science and Engineering. 2021;46(10):9437–9449. Available from: https://doi.org/10.1007/s13369-020-05206-x
  14. Capitoli G, Piga I, L’imperio V, Clerici F, Leni D, Garancini M, et al. Cytomolecular Classification of Thyroid Nodules Using Fine-Needle Washes Aspiration Biopsies. International Journal of Molecular Sciences. 2022;23(8):4156. Available from: https://doi.org/10.3390/ijms23084156
  15. Chandio JA, Mallah GA, Shaikh NA. Decision Support System for Classification Medullary Thyroid Cancer. IEEE Access. 2020;8:145216–145226. Available from: https://doi.org/10.1109/ACCESS.2020.3014863
  16. Islam SS, Haque MS, Miah MSU, Sarwar TB, Nugraha R. Application of machine learning algorithms to predict the thyroid disease risk: an experimental comparative study. PeerJ Computer Science. 2022;8:e898. Available from: http://doi.org/10.7717/peerj-cs.898
  17. Kumar Y, Gupta S, Singla R, Hu YC. A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis. Archives of Computational Methods in Engineering. 2022;29(4):2043–2070. Available from: https://doi.org/10.1007/s11831-021-09648-w
  18. Mourad M, Moubayed S, Dezube A, Mourad Y, Park K, Torreblanca-Zanca A, et al. Machine Learning and Feature Selection Applied to SEER Data to Reliably Assess Thyroid Cancer Prognosis. Scientific Reports. 2020;10(1):5176. Available from: https://doi.org/10.1038/s41598-020-62023-w
  19. Li H, Weng J, Shi Y, Gu W, Mao Y, Wang Y, et al. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Scientific Reports. 2018;8(1):6600. Available from: https://doi.org/10.1038/s41598-018-25005-7
  20. Nguyen DT, Pham TD, Batchuluun G, Yoon HS, Park KR. Artificial Intelligence-Based Thyroid Nodule Classification Using Information from Spatial and Frequency Domains. Journal of Clinical Medicine. 1976;8(11):1976. Available from: https://doi.org/10.3390/jcm8111976
  21. Layek K, Basak B, Samanta S, Maity SP, Barui A. Stiffness prediction on elastography images and neuro-fuzzy based segmentation for thyroid cancer detection. Applied Optics. 2022;61(1):49. Available from: https://doi.org/10.1364/AO.445226
  22. Ajilisa OA, Jagathyraj VP, Sabu MK. Computer-Aided Diagnosis of Thyroid Nodule from Ultrasound Images Using Transfer Learning from Deep Convolutional Neural Network Models. 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). 2020;p. 237–241. Available from: https://doi.org/10.1109/ACCTHPA49271.2020.9213210
  23. Rehman HAU, Lin CY, Mushtaq Z, Su SF. Performance Analysis of Machine Learning Algorithms for Thyroid Disease. Arabian Journal for Science and Engineering. 2021;46(10):9437–9449. Available from: https://doi.org/10.1007/s13369-020-05206-x
  24. Cruz JA, Wishart DS. Applications of Machine Learning in Cancer Prediction and Prognosis. Cancer Informatics. 2006;2:117693510600200. Available from: https://doi.org/10.1177/117693510600200030


© 2022 Vanitha & Perumal. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.