• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 1, Pages: 22-32

Original Article

A Novel Parameter Reduction Method for Simplifying Improved RC-IDeepRT

Received Date:26 September 2020, Accepted Date:20 December 2020, Published Date:11 January 2021


Objectives: To decrease the model parameters in Reinforcement learning with Compressed Improved DeepRT (RC-IDeepRT) for Cyber-Physical System (CPS) data analysis, a method is proposed in this study. Methods: A parameter reduction method is proposed to decrease the model parameter by combining pruning and factorization. The pruning may not save the memory usage in traditional computers unless sparse matrices are supported and explicitly used. However, it directly reduces the usage of synapses in neuromorphic architecture. This method minimizes the total number of required neurons and synapses given a trained model. Findings: The integration of factorization and pruning allows creating sparsely connected reinforcement learning with deep learning network from a given trained network. The dangling connections in the network are determined and the remaining connections of the dangling neurons are further pruned. The pruned network is cost-effective and it classifies the CPS data effectively. Novelty: This proposed method tries to minimize the number of parameters in RC-IDeepRT. The number of parameters becomes a good surrogate metric assuming the deep learning architecture accommodates sparse networks effectively. The reduced model parameters are used for CPS data classification.

Keywords: Cyber-physical system; deep learning; DeepRT; reinforcement with compressed improved DeepRT; parameter reduction method; pruning; factorization


  1. De S, Zhou Y, Abad IL, Moessner K. Cyber–Physical–Social Frameworks for Urban Big Data Systems: A Survey. Applied Sciences. 2017;7:1017. Available from: https://dx.doi.org/10.3390/app7101017
  2. Basarabă L, Pescaru D. Using decision tree for efficient data classification in Cyber-physical systems. IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI). 2011;p. 385–390. Available from: https://doi.org/10.1109/SACI.2011.5873034
  3. Charalamboskonstantinou M, Saqib F, Hu S, Plusquellic J, Y. Cyber-physical systems: A security perspective. In: 20th IEEE European Test Symposium (ETS). (pp. 1-8) 2015.
  4. Kang W, Chung J. DeepRT: predictable deep learning inference for cyber-physical systems. Real-Time Systems. 2019;55(1):106–135. Available from: https://dx.doi.org/10.1007/s11241-018-9314-y
  5. Rajalakshmi T, Sathappan S. Feature Space Selection for Cyber-Physical System Based on Improved Feature Space Partitioning Tree. International Journal of Advanced Science and Technology. 2019;28(17):401–410.
  6. Petarradanliev DC, Roure JRD, Nurse RM, Montalvo S, Cannady O, Santos P, et al. Future developments in standardisation of cyber risk in the Internet of Things (IoT) SN Applied Sciences . 2. Available from: https://doi.org/10.1007/s42452-019-1931-0
  7. Patan R, Ghantasala GSP, Sekaran R, Gupta D, Ramachandran M. Smart healthcare and quality of service in IoT using grey filter convolutional based cyber physical system. Sustainable Cities and Society. 2020;59. Available from: https://dx.doi.org/10.1016/j.scs.2020.102141
  8. Pasqualetti F, Dorfler F, Bullo F. Attack Detection and Identification in Cyber-Physical Systems. IEEE Transactions on Automatic Control. 2013;58(11):2715–2729. Available from: https://dx.doi.org/10.1109/tac.2013.2266831
  9. Spezzano G, Vinci A. Pattern Detection in Cyber-Physical Systems. Procedia Computer Science. 2015;52:1016–1021. Available from: https://dx.doi.org/10.1016/j.procs.2015.05.096
  10. Ntalampiras S. Automatic identification of integrity attacks in cyber-physical systems. Expert Systems with Applications. 2016;58:164–173. Available from: https://dx.doi.org/10.1016/j.eswa.2016.04.006
  11. Amuthadevi C, Priya JS, Madhusudhanan B. Validation of multicast routing in cyber physical systems monitoring air quality. Cluster Computing. 2019;22:3917–3923. Available from: https://dx.doi.org/10.1007/s10586-018-2512-5
  12. Ruan J, Jiang H, Li X, Shi Y, Chan FTS, Rao W. A Granular GA-SVM Predictor for Big Data in Agricultural Cyber-Physical Systems. IEEE Transactions on Industrial Informatics. 2019;15(12):6510–6521. Available from: https://dx.doi.org/10.1109/tii.2019.2914158
  13. Arafsha F, Laamarti F, Saddik AE. Cyber-Physical System Framework for Measurement and Analysis of Physical Activities. Electronics. 2019;8(2):248. Available from: https://dx.doi.org/10.3390/electronics8020248
  14. Patan R, Ghantasala GSP, Sekaran R, Gupta D, Ramachandran M. Smart healthcare and quality of service in IoT using grey filter convolutional based cyber physical system. Sustainable Cities and Society. 2020;59. Available from: https://dx.doi.org/10.1016/j.scs.2020.102141
  15. Sajan KS, Bariya M, Sanchitabasak A, Srivastava A, Dubey A, Meier G, et al. Realistic Synchrophasor Data Generation for Anomaly Detection and Event Classification. In: IEEE 8th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems. (pp. 1-6) 2020.


© 2021 Rajalakshmi & Sathappan.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.