• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 2, Pages: 101-112

Original Article

A study on non-linear optical properties of Copper Sodium Tartrate single crystal for non-linear optical applications

Received Date:01 September 2021, Accepted Date:20 December 2021, Published Date:15 January 2021

Abstract

Objectives: To calculate the optical and structural parameters of the copper sodium tartrate (CuNaT) crystal for investigating its usefulness in the non-linear optics, it was analyzed by XRD and optical studies. Methods : A good nonlinear optical CuNaT crystal was grown by silica gel medium. The fundamental factors to prepare the silica gel for the controlled and defect - free growth of the CuNaT crystal are gel pH, gel density and gel setting period. Findings:The non-centro symmetric structure with refined lattice parameters: a = 7.7230 Å, b = 20.2964 Å, c = 7.9896 Å and the required functional groups: O-H, M-O,C-O and C=O bonds of CuNaT were recognized by the XRD and FTIR studies. Novelty: The monoclinic structure and space group P21 of grown CuNaT crystal was non-identical to the orthorhombic structure of the copper tartrate crystal was enabled to identify its novel structure. The NLO competence of the CuNaT was 0.38 times relative to KDP and of higher LDT value than the KDP, provided its novel optical properties. Applications: The strong intensity emission peaks recorded at 297 nm and 380 nm in the photoluminescence spectrum and the lower absorption edge at 334 nm in the UV spectrum of the CuNaT crystal exhibited its potential use in non-linear optics.

Keywords: Single crystal XRD; FTIR; UVVisNIR; PL; SHG; LDT

References

  1. Sheela GE, Manimaran D, Joe H, Jothy VB. Studies on Molecular Structure and Vibrational Spectra of NLO Crystal L-Glutamine Oxalate by DFT Method. Indian Journal of Science and Technology. 2017;10(31):1–23. Available from: https://dx.doi.org/10.17485/ijst/2017/v10i31/114486
  2. Greena JAM. Electrical conductivity studies on pure and barium added strontium tartrate trihydrate crystals. Indian Journal of Science and Technology. 2010;3(3):250–252. Available from: https://dx.doi.org/10.17485/ijst/2010/v3i3.22
  3. Revanasiddappa HD, Vijaya B, Shivakumar L, Prasad K, Revanasiddappa HD, Vijaya B, et al. Synthesis, Structural Characterization, and Antimicrobial Activity Evaluation of New Binuclear Niobium (V) Tartrate Complexes with Biologically Important Drugs. Inorganic Chemistry. 2013;p. 1–7. Available from: http://dx.doi.org/: 10.1155/2013/760754
  4. Bott RC, Sagatys DS, Lynch DE, Smith G, Kennard CHL. Structure of sodium hydrogen (+)-tartrate monohydrate. Acta Crystallographica Section C Crystal Structure Communications. 1993;49(6):1150–1152. Available from: https://dx.doi.org/10.1107/s0108270192012605
  5. Binitha MP, Pradyumnan PP. Thermal degradation, dielectric and magnetic studies on copper tartrate trihydrate crystals. Journal of Thermal Analysis and Calorimetry. 2013;114(2):665–669. Available from: https://dx.doi.org/10.1007/s10973-013-2998-2
  6. Patil CS, DNS, Pawar TVB, Synthesis R. Characterization of Novel Mixed Metal Tartrate Complexes and Study of their in vitro antimicrobial activity. Int J Pharm Sci Res. 2016;7(4):1524–1534. Available from: http://dx.doi.org/10.13040/IJPSR.0975-8232
  7. Al-Dajani TMM, Hassan H, Abdallah N, Mohamed. Madhukar Hema malini, Hoong-Kun Fun, Diaquabis (hydrogen tartrato) copper(II) dehydrate. Acta Crystallographica Section E: Crystallographic Communications. 2010;66:774–775. Available from: http://dx.doi.org/: 10.1107/S1 60 05 3681002115X
  8. Hemalatha K, Sumithra S, Gowri S, Kumar R. Influence of Metal on Vibrational and Optical Properties of Mixed Tartrate Crystal in Silica Gel Medium. Int J Cur Res Rev. 2017;9(10):133–136.
  9. Jeyapappa K, Krishnan C, Selvarajan P. Growth, and studies of L-tartaric acid crystals doped with glycine. International Journal of Research and Analytical Reviews. 2018;5:847–855.
  10. Joshi SJ, Tank KP, Vyas PM, Joshi MJ. Structural, FTIR, thermal and dielectric studies of gel grown manganese–copper mixed levo tartrate crystals. Journal of Crystal Growth. 2014;401:210–214. Available from: https://dx.doi.org/10.1016/j.jcrysgro.2014.01.060
  11. Jethva HO, Dabhi RM, Joshi MJ. Structural, Spectroscopic, Magnetic and Thermal Studies of Gel-Grown Copper Levo-Tartrate and Copper Dextro-Tartrate Crystals. IOSR Journal of Applied Physics. 2016;8:33–42.
  12. Zhu Z, Zhang Y, Ji Z, He S, Yang X. High-throughput DNA sequence data compression. Briefings in Bioinformatics. 2015;16:1–15. Available from: https://dx.doi.org/10.1093/bib/bbt087
  13. Hemalatha K, Sumithra S, Gowri S, Kumar R. Influence of Metal on Vibrational and Optical Properties of Mixed Tartrate Crystal in Silica Gel Medium. Int J Cur Res Rev. 2012;9:133–136.
  14. Stanila A, Marcu A, Rusu D, Rusu M, David L. Spectroscopic studies of some copper(II) complexes with amino acids. Journal of Molecular Structure. 2007;834-836(836):364–368. Available from: https://dx.doi.org/10.1016/j.molstruc.2006.11.048
  15. Arora SK, Patel V, Chudasama B, Amin B. Single crystal growth and characterization of strontium tartrate. Journal of Crystal Growth. 2005;275(1-2):e657–e661. Available from: https://dx.doi.org/10.1016/j.jcrysgro.2004.11.047
  16. Shankar G, Joseph PS, Suvakin MY, Sebastiyan A. Investigation of optical band gap in pyrrolidinomethylphthalimide crystal. Physica B: Condensed Matter. 2010;405(19):4231–4234. Available from: https://dx.doi.org/10.1016/j.physb.2010.07.016
  17. Dillip GR, Bhagavannarayana G, Raghavaiah P, Raju BDP. Effect of magnesium chloride on growth, crystalline perfection, structural, optical, thermal and NLO behavior of γ-glycine crystals. Materials Chemistry and Physics. 2012;134(1):371–376. Available from: https://dx.doi.org/10.1016/j.matchemphys.2012.03.004
  18. Gunasekaran S, Anand G, Balaji RA, Dhanalakshmi J, Kumaresan S. Crystal growth and comparison of vibrational and thermal properties of semi-organic nonlinear optical materials. Pramana. 2010;75(4):683–690. Available from: https://dx.doi.org/10.1007/s12043-010-0148-y
  19. Sawant DK, Patil HM, Bhavsar DS, Patil JH, Girase KD. Structural and Optical Properties of Calcium Cadmium Tartrate. Archives of Physics Research. 2011;2(2):67–73. Available from: http://scholarsresearchlibrary.com/archive.html
  20. Suresh S, Devi SR, Sornamurthy BM, Arivanandhan M, Kumar RM. Growth, structural and optical studies of a novel nonlinear optical material: p-Toluidinium L-Tartrate. Optik. 2019;185:651–656. Available from: https://dx.doi.org/10.1016/j.ijleo.2019.03.032
  21. Hanumantharao R, Kalainathan S, Bhagavannarayana G, Madhusoodanan U. An extensive investigation on nucleation, growth parameters, crystalline perfection, spectroscopy, thermal, optical, microhardness, dielectric and SHG studies on potential NLO crystal – Ammonium Hydrogen l-tartarte. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;103:388–399. Available from: https://dx.doi.org/10.1016/j.saa.2012.10.044
  22. Peramaiyan G, Pandi P, Vijayan N, Bhagavannarayana G, Kumar RM. Crystal growth, structural, thermal, optical and laser damage threshold studies of 8-hydroxyquinolinium hydrogen maleate single crystals. Journal of Crystal Growth. 2013;375:6–9. Available from: https://dx.doi.org/10.1016/j.jcrysgro.2013.04.011

Copyright

© 2021 Selasteen & Raj.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.