• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 8, Pages: 741-750

Original Article

Vehicle Speed Detection using Haar Cascade Classifier and Correlation Tracking

Received Date:14 June 2023, Accepted Date:27 November 2023, Published Date:20 February 2024


Objectives: The aim of this study is to develop an efficient and cost-effective solution for predicting vehicle speeds using recorded video data. Methods: The proposed system employs a combination of image processing techniques and computer vision to calibrate cameras for traffic simulation, enabling the extraction of information on average vehicle speeds. It utilizes the Haar Cascade Classifier for object detection, followed by a correlation tracker for vehicle tracking. Speed estimation is achieved through the frame differencing method. The dataset comprises 90 minutes of recorded data from highway cameras, showcasing diverse traffic scenarios with various vehicle types (trucks, trailers, cars, buses, and bikes) at varying speeds. Predicted values are compared with ground truth data obtained from a GPS-equipped car, using Mean Absolute Error (MAE) as the evaluation metric. Findings: The algorithm's performance is evaluated, resulting in an average error rate of 1.72 km/h (2.07%). These findings are compared with state-of-the-art data. Novelty: This study introduces a novel system that combines the Haar Cascade Classifier, correlation tracker, and frame differencing method to track vehicle positions, incorporating bike detection into the analysis, and calculate their moving speeds. A relative analysis underscores the system's performance, emphasizing its effectiveness in real-world applications and demonstrating refinement in accuracy assessment.

Keywords: Image processing, Vehicle speed estimation, Haar Cascade Classifier, Correlation tracker, Error rate calculation, Computer vision


  1. Lu S, Wang Y, Song H. A high accurate vehicle speed estimation method. Soft Computing. 2020;24(2):1283–1291. Available from: https://doi.org/10.1007/s00500-019-03965-w
  2. Zhang T, Jin PJ. Roadside LiDAR Vehicle Detection and Tracking Using Range and Intensity Background Subtraction. Journal of Advanced Transportation. 2022;2022:1–14. Available from: https://doi.org/10.1155/2022/2771085
  3. Zhang B, Zhang J. A Traffic Surveillance System for Obtaining Comprehensive Information of the Passing Vehicles Based on Instance Segmentation. IEEE Transactions on Intelligent Transportation Systems. 2021;22(11):7040–7055. Available from: https://doi.org/10.1109/TITS.2020.3001154
  4. Rakesh S, Chari MV, Manohar KB, Goud YVNA. Speed checker and reporting system. International journal of health sciences. 2022;6(S4):5189–5201. Available from: https://doi.org/10.53730/ijhs.v6nS4.9315
  5. Yang Y, Xing W, Zhang S, Yu Q, Guo X, Guo M. A Learning Frequency-Aware Feature Siamese Network for Real-Time Visual Tracking. Electronics. 2020;9(5):1–13. Available from: https://doi.org/10.3390/electronics9050854
  6. Trivedi JD, Devi MS, Dave DH. A Vision-Based Real-Time Adaptive Traffic Light Control System Using Vehicular Density Value and Statistical Block Matching Approach. Transport and Telecommunication Journal. 2021;22(1):87–97. Available from: https://doi.org/10.2478/ttj-2021-0007
  7. Trivedi JD, Mandalapu SD, Dave DH. Vision-based real-time vehicle detection and vehicle speed measurement using morphology and binary logical operation. Journal of Industrial Information Integration. 2022;27:100280. Available from: https://doi.org/10.1016/j.jii.2021.100280
  8. Chen Z, Guo H, Yang J, Jiao H, Feng Z, Chen L, et al. Fast vehicle detection algorithm in traffic scene based on improved SSD. Measurement. 2022;201:111655. Available from: https://doi.org/10.1016/j.measurement.2022.111655
  9. Sharma K. Survey on Various Techniques for Over-Speed Detection of Vehicles. International Journal for Research in Applied Science and Engineering Technology. 2021;9(5):1633–1640. Available from: https://www.ijraset.com/fileserve.php?FID=34578
  10. Javadi S, Dahl M, Pettersson MI. Vehicle speed measurement model for video-based systems. Computers & Electrical Engineering. 2019;76:238–248. Available from: https://doi.org/10.1016/j.compeleceng.2019.04.001
  11. Mahalakshmi PD, Babu M. Vehicle Speed Estimation using Haar Classifier Algorithm. Published in International Journal of Trend in Scientfific Research and Development (ijtsrd). 2019;4(1):243–246. Available from: https://www.ijtsrd.com/papers/ijtsrd29482.pdf
  12. Kamoji S, Koshti D, Dmonte A, George SJ, Pereira CS. Image Processing based Vehicle Identification and Speed Measurement. In: 2020 International Conference on Inventive Computation Technologies (ICICT). (pp. 523-527) IEEE. 2020.
  13. Kanavi P, Chaithra KB, Chaitra KT, Bhoomika MG, Lakshmi CT. Automatic Vehicle Over Speed Detection Alert and Controlling System on Highway. International Journal of Engineering Research & Technology. 2022;10(11):602–604. Available from: https://www.ijert.org/research/automatic-vehicle-over-speed-detection-alert-and-controlling-system-on-highway-IJERTCONV10IS11140.pdf
  14. Xie M, Su Q, Wang L, Zhang Z, Ding B, Xu X, et al. The research of traffic cones detection based on Haar-like features and adaboost classification. In: 9th International Symposium on Test Automation & Instrumentation (ISTAI 2022). Institution of Engineering and Technology. 2023.
  15. Dandashy T, Hassan M, El, Bitar A. Enhanced Face Detection Based on Haar-Like and MB-LBP Features. International Journal of Engineering and Management Research. 2019;9(4):117–124. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3479590
  16. Krishna DS, Vadamodula P, Jayasri K. Vehicle Speed Estimation Based On Videos Using Deep Learning Techniques. The Seybold Report. 2022;17(9):1320–1333. Available from: https://doi.org/10.5281/zenodo.7107001
  17. Gupta U, Kumar U, Kumar S, Shariq M, Kumar R. Vehicle speed detection system in highway. International Research Journal of Modernization in Engineering Technology and Science. 2022;4(5):406–411. Available from: https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2022/22249/final/fin_irjmets1651835089.pdf
  18. Neamah SB, Karim AA. Real-time Traffic Monitoring System Based on Deep Learning and YOLOv8. Aro-The Scientific Journal of Koya University. 2023;11(2):137–150. Available from: https://aro.koyauniversity.org/index.php/aro/article/view/1327
  19. Zhang J, Xiao W, Coifman B, Mills JP. Vehicle Tracking and Speed Estimation From Roadside Lidar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020;13:5597–5608. Available from: https://doi.org/10.1109/JSTARS.2020.3024921
  20. Yu Y, Zhao J, Gong Q, Huang C, Zheng G, Ma J. Real-Time Underwater Maritime Object Detection in Side-Scan Sonar Images Based on Transformer-YOLOv5. Remote Sensing. 2021;13(18):1–28. Available from: https://doi.org/10.3390/rs13183555
  21. Hsu CM, Chen JY. Around View Monitoring-Based Vacant Parking Space Detection and Analysis. Applied Sciences. 2019;9(16):1–30. Available from: https://doi.org/10.3390/app9163403
  22. Budhkar AK, Asaithambi G, Maurya AK, Arkatkar SS. Emerging Traffic Data Collection Practices Under Mixed Traffic Conditions: Challenges and Solutions. In: Transportation Research in India , Springer Transactions in Civil and Environmental Engineering. (pp. 101-129) Singapore. Springer . 2022.
  23. Wu J, Zhang Y, Xu H. A novel skateboarder-related near-crash identification method with roadside LiDAR data. Accident Analysis & Prevention. 2020;137:105438. Available from: https://doi.org/10.1016/j.aap.2020.105438
  24. Fauzi MD, Putra AE, Wahyono W. Estimation of Average Car Speed Using the Haar-Like Feature and Correlation Tracker Method. Indonesian Journal of Computing Cybernetics Systems. 2020;14(4):353–364. Available from: https://doi.org/10.22146/ijccs.57262
  25. Julina JKJ, TSS, Gladwin SJ. Vehicle Speed Detection System using Motion Vector Interpolation. In: 2019 Global Conference for Advancement in Technology (GCAT). Bangalore, India, 18-20 October 2019. IEEE. .
  26. Ravi J, Pavan V, Sri VY, Srinu V, Kumar YG. Tracking and Evaluation of the Speed of Portable Vehicles Based on Video Processing using Python. International Journal of Progressive Rese/arch in Engineering Management and Science (IJPREMS). 2023;3(3):7–13. Available from: https://www.ijprems.com/uploadedfiles/paper/issue_3_march_2023/30675/final/fin_ijprems1677758281.pdf


© 2024 Siddiqua et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.