• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 17, Pages: 1379-1391

Original Article

A two-dimensional Multiserver Queuing system with repeated attempts and impatience

Received Date:04 June 2020, Accepted Date:26 April 2021, Published Date:15 May 2021


Objective: This study discusses a two-state multiserver retrial queueing system, where the customer may leave the system due to impatience. In this paper, we deal with the time dependent probabilities when all, some or none servers are busy. Method: For this model, we solved difference differential equations recursively and obtained the time dependent probabilities when all, some or none servers are busy. Findings: Time dependent probabilities of exact number of arrivals and exact number of departures at when all, some or none servers are busy are obtained. In this paper, some kind of verification and converting two state model into single state model are discussed. Some special cases of interest are also discussed. Novelty: In communication networks, multiple servers are used to reduce traffic congestion and improve system performance. The operation mode of a call center with repeated attempts provides an initial motivation for our study.

Keywords: Impatience; Multiserver; Probability; Queueing; Retrial


  1. Artalejo JR. Accessible bibliography on retrial queues. Mathematical and Computer Modelling. 1999;30(3-4):1–6. Available from: https://dx.doi.org/10.1016/s0895-7177(99)00128-4
  2. Falin G. A survey of retrial queues. Queueing Systems. 1990;7(2):127–167. Available from: https://dx.doi.org/10.1007/bf01158472
  3. Kulkarni VG, Liang H. Retrial queues Revisited. In: Dshalalow JH., ed. Frontiers in Queueing. (pp. 19-34) CRC Press. 1998.
  4. Yang T, Templeton JGC. A survey on retrial queues. Queueing Systems. 1987;2(3):201–233. Available from: https://dx.doi.org/10.1007/bf01158899
  5. Cohen JW. Basic problems of telephone traffic theory and the influence of repeated calls. Philips Telecommunication Review. 1957;18:49–100. Available from: https://ci.nii.ac.jp/naid/10000050792/
  6. Baccelli F, Boyer P, Hebuterne G. Single-server queues with impatient customers. Advances in Applied Probability. 1984;16(4):887–905. Available from: https://doi.org/10.2307/1427345
  7. Perel N, Yechiali U. Queues with slow servers and impatient customers. European Journal of Operational Research. 2010;201(1):247–258. Available from: https://dx.doi.org/10.1016/j.ejor.2009.02.024
  8. Choudhury A, Medhi P. Balking and reneging in multiserver Markovian queuing system. International Journal of Mathematics in Operational Research. 2011;3(4):377–394. Available from: https://dx.doi.org/10.1504/ijmor.2011.040874
  9. Pegden CD, Rosenshine M. Some New Results for theM/M/1 Queue. Management Science. 1982;28(7):821–828. Available from: https://dx.doi.org/10.1287/mnsc.28.7.821
  10. Garg PC, Kumar S. A Single Server Retrial Queue With Impatient Customers. Mathematical Journal of Interdisciplinary Sciences. 2012;1(1):67–82. Available from: https://dx.doi.org/10.15415/mjis.2012.11006
  11. Falin GI, Templeton JGC. Retrial Queues (1). (p. 320) Chapman and Hall/CRC. 1997.
  12. Singla N, Kalra S. A Two - State Retrial Queueing Model with Balking Customers. International Journal of Interdisciplinary Research and Innovations. 2018;6:528–539. Available from: https://researchpublish.com/journal-details/IJIRI
  13. Singla N, Kalra S. A Two - State Retrial Queueing Model with Reneging Customers. International Journal of Management. 2018;8:2650–2663. Available from: http://ijamtes.org/VOL-8-ISSUE-10-2018-1/


© 2021 Singla & Kalra. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.