• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 2, Pages: 149-165

Review Article

A Vast Review of Recognizing the Presence of Android Malware Based on Ensemble Machine Learning Technique

Received Date:21 September 2023, Accepted Date:14 December 2023, Published Date:12 January 2024


Background: It is evaluated that there is 70% to 80% of smartphone users have an Android mobile. Given its trend, a lot of malware strikes on the Android OS. In 2018, the largest number of malware attacks was identified, when there were 10.5 billion such malicious activity detected worldwide. Machine learning has emerged as a promising approach for detecting Android malware, and Ensemble machine learning has been shown to enhance the accuracy of malware detection in other domains. Objectives: In this paper, the systematic literature review were conducted using natural language processing. 30 papers are selected from January 2019 to August 2023 to give a clear picture of the most recent work in Android malware detection using ensemble machine learning. Methods: Initially the ensemble machine learning analysis were categorized in Android malware detection into four groups. Static Ensembles, Dynamic Ensembles, Hybrid Ensembles and Structural Ensembles method and compare the outcomes of empirical evidence with the help of a systematic literature review using the natural language processing method. Findings: The findings demonstrate an emerging trend of using NLP for Android malware detection in combination with ensemble machine learning models. The use of natural language processing (NLP) enhances the capacity to identify harmful patterns by making it easier to extract key features from textual input. The paper also emphasizes the variety of ensemble models used, including Tree-Based, Meta ensemble, Specialized ensemble and others. Significance : The novel aspects of this paper are its extensive comparative evaluation of ensemble and non-ensemble models, its original combination of NLP and ensemble machine learning for Android malware detection, and its extensive review of the literature with an eye toward future directions and research gaps. As a result, based on the present research community, it is important to develop some unique ways to enhance Android malware detection.

Keywords: Ensemble Machine Learning, Static analysis ensemble, Dynamic Analysis Ensembles, Hybrid Feature Ensembles, Structural Analysis Ensembles


  1. Chowdhury MN, Haque A, Soliman H, Hossen MS, Fatima T, Ahmed I. Android Malware Detection using Machine learning: A Review. 2023. Available from: https://doi.org/10.48550/arXiv.2307.02412
  2. Mijoya IB, Khurana S, Gupta N. Malware detection in Android devices Using Machine Learning. In: 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). Greater Noida, India, 04-05 November 2022. IEEE. p. 307–312.
  3. Rani S, Tripathi K, Kumar A. Machine learning aided malware detection for secure and smart manufacturing: a comprehensive analysis of the state of the art. International Journal on Interactive Design and Manufacturing (IJIDeM). 2023;p. 1–28. Available from: https://doi.org/10.1007/s12008-023-01578-0
  4. Muzaffar A, Hassen HR, Lones MA, Zantout H. An in-depth review of machine learning based Android malware detection. Computers & Security. 2022;121:1–21. Available from: https://doi.org/10.1016/j.cose.2022.102833
  5. Agrawal R, Shah V, Chavan S, Gourshete G, Shaikh N. Android Malware Detection Using Machine Learning. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). Vellore, India, 24-25 February 2020. IEEE. .
  6. Chimeleze C, Jamil N, Ismail R, Lam KY, Teh JS, Samual J, et al. BFEDroid: A Feature Selection Technique to Detect Malware in Android Apps Using Machine Learning. Security and Communication Networks. 2022;2022:1–24. Available from: https://doi.org/10.1155/2022/5339926
  7. Ding Y, Zhang X, Hu J, Xu W. Android malware detection method based on bytecode image. Journal of Ambient Intelligence and Humanized Computing. 2023;14(5):6401–6410. Available from: https://doi.org/10.1007/s12652-020-02196-4
  8. Shatnawi AS, Yassen Q, Yateem A. An Android Malware Detection Approach Based on Static Feature Analysis Using Machine Learning Algorithms. Procedia Computer Science. 2022;201:653–658. Available from: https://doi.org/10.1016/j.procs.2022.03.086
  9. Alzahrani AIA, Ayadi M, Asiri MM, Al-Rasheed A, Ksibi A. Detecting the Presence of Malware and Identifying the Type of Cyber Attack Using Deep Learning and VGG-16 Techniques. Electronics. 2022;11(22):1–20. Available from: https://doi.org/10.3390/electronics11223665
  10. Islam R, Sayed MI, Saha S, Hossain MJ, Masud MA. Android malware classification using optimum feature selection and ensemble machine learning. Internet of Things and Cyber-Physical Systems. 2023;3:100–111. Available from: https://doi.org/10.1016/j.iotcps.2023.03.001
  11. Zhou H, Zhang S, Yong F, Pan H, Guo W. An Android Malware Detection Approach Based on Summation of Multi-order Derivatives LSTM. Research Square Platform LLC. 2022. Available from: https://doi.org/10.21203/rs.3.rs-2337299/v1
  12. Sharan AS, Radhika KR. Machine Learning Based Solution for Detecting Malware Android Applications. International Journal of Innovative Research in Applied Sciences and Engineering. 2020;4(3):664–668. Available from: https://www.ijirase.com/assets/paper/issue_1/volume_4/V4-Issue-3-664-668.pdf
  13. Abualghanam O, Alazzam H, Qatawneh M, Aladwan O, Alsharaiah MA, Almaiah MA. Android Malware Detection System Based on Ensemble Learning. Research Square Platform LLC. 2023. Available from: https://doi.org/10.21203/rs.3.rs-2521341/v1
  14. Kuchipudi R, Uddin M, Murthy TS, Mirrudoddi TK, Ahmed M, PRB. Android Malware Detection using Ensemble Learning. In: 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS). Coimbatore, India, 14-16 June 2023. IEEE. p. 297–302.
  15. Zhu HJ, Li Y, Wang LM, Sheng VS. A multi-model ensemble learning framework for imbalanced android malware detection. Expert Systems with Applications. 2023;234:120952. Available from: https://doi.org/10.1016/j.eswa.2023.120952
  16. Zhang N, Xue J, Ma Y, Zhang R, Liang T, Tan YA. Hybrid sequence‐based Android malware detection using natural language processing. International Journal of Intelligent Systems. 2021;36(10):5770–5784. Available from: https://doi.org/10.1002/int.22529
  17. Mahindru A, Sangal AL. MLDroid—framework for Android malware detection using machine learning techniques. Neural Computing and Applications. 2021;33(10):5183–5240. Available from: https://doi.org/10.1007/s00521-020-05309-4
  18. Potha N, Kouliaridis V, Kambourakis G. An extrinsic random-based ensemble approach for android malware detection. Connection Science. 2021;33(4):1077–1093. Available from: https://doi.org/10.1080/09540091.2020.1853056
  19. Rana MS, Sung AH. Evaluation of Advanced Ensemble Learning Techniques for Android Malware Detection. Vietnam Journal of Computer Science. 2020;07(02):145–159. Available from: https://doi.org/10.1142/S2196888820500086
  20. Yang Y, Du X, Yang Z, Liu X. Android Malware Detection Based on Structural Features of the Function Call Graph. Electronics. 2021;10(2):1–17. Available from: https://doi.org/10.3390/electronics10020186
  21. Mehtab A, Shahid WB, Yaqoob T, Amjad MF, Abbas H, Afzal H, et al. AdDroid: Rule-Based Machine Learning Framework for Android Malware Analysis. Mobile Networks and Applications. 2020;25(1):180–192. Available from: https://doi.org/10.1007/s11036-019-01248-0
  22. Kim M, Kim D, Hwang C, Cho S, Han S, Park M. Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions. Applied Sciences. 2021;11(21):1–24. Available from: https://doi.org/10.3390/app112110244
  23. Zhu H, Li Y, Li R, Li J, You Z, Song H. SEDMDroid: An Enhanced Stacking Ensemble Framework for Android Malware Detection. IEEE Transactions on Network Science and Engineering. 2021;8(2):984–994. Available from: https://doi.org/10.1109/TNSE.2020.2996379
  24. Abubaker H, Ali A, Shamsuddin SM, Hassan S. Exploring permissions in Android applications using ensemble-based extra tree feature selection. Indonesian Journal of Electrical Engineering and Computer Science. 2020;19(1):543–552. Available from: http://doi.org/10.11591/ijeecs.v19.i1.pp543-552
  25. Guan S, Li W. EnsembleDroid: A Malware Detection Approach for Android System based on Ensemble Learning. In: 2022 IEEE MIT Undergraduate Research Technology Conference (URTC). Cambridge, MA, USA, 30 September 2022 - 02 October 2022. IEEE. p. 1–5.


© 2024 Malik & Sharma. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.