• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 32, Pages: 3327-3338

Original Article

A view on characterizations of the J shaped statistical distribution

Received Date:19 April 2020, Accepted Date:17 May 2020, Published Date:02 September 2020


Objectives: In recent years, characterization of any distribution has become important in the field of probability distribution.The objective of the study is to characterize the power function distribution to see its usefulness under different real life situations such as Engineering and medical sciences. Methods: The study proposed the characterization of Power function distribution based on mean inactivity times (MIT), mean residual function (MRF), conditional moments, conditional variance (CV), doubly truncated mean (DTM), incomplete moments and reverse hazard function. Findings:We have characterized the power function distribution using different method, and conclude that thesufficient and necessary conditions of different methods mentioned above meet the results of Power function distribution. Application: Power function distribution has wide applicability in the field of Engineering. The findings of the paper may help the Engineers to know more about the Power function distribution.

Keywords: Characterization; mean inactivity time; mean residual function; power function distribution


  1. Fisz M. Characterization of Some Probability Distribution. Skand. Aktuarietidskr. 1958;41(2):65–67. Available from: https://www.researchgate.net/publication/266928039
  2. Basu AP. On characterizing the exponential distribution by order statistics. Annals of the Institute of Statistical Mathematics. 1965;17(1):93–96. Available from: https://dx.doi.org/10.1007/bf02868158
  3. Govindarajulu Z. Characterization of the exponential and power distributions. Scandinavian Actuarial Journal. 1966;1966(3-4):132–136. Available from: https://dx.doi.org/10.1080/03461238.1966.10404560
  4. Dallas AC. Characterizing the pareto and power distributions. Annals of the Institute of Statistical Mathematics. 1976;28(1):491–497. Available from: https://dx.doi.org/10.1007/bf02504764
  5. Dallas AC. On the exponential law. Metrika. 1979;26(1):105–108. Available from: https://dx.doi.org/10.1007/bf01893477
  6. Deheuvels P. The characterization of distributions by order statistics and record values - a unified approach. Journal of Applied Probability. 1984;21:326–334. Available from: https://doi.org/10.2307/3213643
  7. Gupta RC. Relationships between order statistics and record values and some characterization results. Journal of Applied Probability. 1984;21:425–430. Available from: https://www.jstor.org/stable/3213652
  8. Nagaraja HN. Some characterizations of discrete distributions based on linear regressions of adjacent order statistics. Journal of Statistical Planning and Inference. 1988;20(1):65–75. Available from: https://dx.doi.org/10.1016/0378-3758(88)90083-3
  9. Su JC, Huang WJ. Characterizations based on conditional expectations. Statistical Papers. 2000;41:423–435. Available from: https://doi.org/10.1007/BF02925761
  10. Gupta CR, Kirmani SNUA. Some Characterization of Distributions by Functions of Failure Rate and Mean Residual Life. Communications in Statistics - Theory and Methods. 2004;33(12):3115–3131. Available from: https://dx.doi.org/10.1081/sta-200039060
  11. Nair NU, Sudheesh KK. Characterization of Continuous Distributions by Variance Bound and Its Implications to Reliability Modeling and Catastrophe Theory. Communications in Statistics - Theory and Methods. 2006;35(7):1189–1199. Available from: https://dx.doi.org/10.1080/03610920600629443
  12. Nair NU, Sudheesh KK. Characterization of continuous distributions by properties of conditional variance. Statistical Methodology. 2010;7(1):30–40. Available from: https://dx.doi.org/10.1016/j.stamet.2009.08.003
  13. Elbatal I, Ahmed AN, Ahsanullah M. Characterization of continuous distributions by their mean inactivity times. Pakistan Journal of Statistics. 2012;28(3):279–292. Available from: https://www.researchgate.net/publication/286709574
  14. Huang W, Su NC. Characterization of distributions based on moments of residual life. Statistics: Theory & Methods. 2012;41:2750–2761. Available from: https://doi.org/10.1080/03610926.2011.552827
  15. Bhatt MB. Characterization of power function distribution through expectation. Open Journal of Statistics. 2013;3:441–443. Available from: https://doi.org/10.4236/ojs.2013.36052
  16. Ahsanullah M, Shakil M, Kibria BMG. A characterization of power function distribution based on lower records. ProbStat Forum. 2013;6:68–72. Available from: https://www.researchgate.net/publication/264760011
  17. Imen B, Imed B, Afif M. On Characterizing the Exponential q-Distribution. Bulletin of the Malaysian Mathematical Sciences Society. 2019;42(6):3303–3322. Available from: https://dx.doi.org/10.1007/s40840-018-0670-5
  18. Leak BW. The J-shaped Probability Distribution. Forest Science. 1965;11(4):405–409. Available from: https://doi.org/10.1093/forestscience/11.4.405
  19. Nadarajah S, Kotz S. Moments of some J-shaped distributions. Journal of Applied Statistics. 2003;30(3):311–317. Available from: https://dx.doi.org/10.1080/0266476022000030084
  20. Chokshi AD, El-Sayed MA, Stine WN. J-Shaped Curves and Public Health. JAMA. 2015;314(13):1339. Available from: https://dx.doi.org/10.1001/jama.2015.9566
  21. Zaka A, Akhter AS, Jabeen R. THE EXPONENTIATED GENERALIZED POWER FUNCTION DISTRIBUTION: THEORY AND REAL LIFE APPLICATIONS. Advances and Applications in Statistics. 2020;61(1):33–63. Available from: https://dx.doi.org/10.17654/as061010033


© 2020 Zaka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.