• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 19, Pages: 1408-1412

Original Article

An Approach for Aspect Extraction Using Double Embedding Technique based Machine Learning Model

Received Date:10 January 2023, Accepted Date:13 March 2023, Published Date:12 May 2023


Objectives: To perform aspect extraction for opinion mining of learner comments in the online teaching-learning scenario. Methods : A machine learning model is developed for aspect extraction. The authors collected the dataset consisting of around 5000 learner comments from Coursera and performed analysis on the dataset. To validate the results, the standard SemEval2014 dataset is used. Findings: For both the contextualised and non contextualised word embeddings, the authors compiled the results of their model for two different datasets, viz., the SemEval 2014 dataset and the collected dataset. The proposed model provided an accuracy of 92.78%. Novelty: For the first time in the literature, double embedding is used for aspect extraction. Using domain-specific embedding provided good results, but the proposed model (using double embedding) is far superior in accuracy.

Keywords: Opinion Mining; Feature Extraction; Double Embedding; Learner Comments; Contextualised Embeddings


  1. Gardner J, Brooks C. Student success prediction in MOOCs. User Modeling and User-Adapted Interaction. 2018;28(2):127–203. Available from: https://doi.org/10.1007/s11257-018-9203-z
  2. Deng R, Benckendorff P, Gannaway D. Progress and new directions for teaching and learning in MOOCs. Computers & Education. 2019;129:48–60. Available from: https://doi.org/10.1016/j.compedu.2018.10.019
  3. Zhu M, Sari A, Bonk CJ. A Systematic Review of MOOC Research Methods and Topics : Comparing. Proceedings of EdMedia: World Conference on Educational Media and Technology. 2013. Available from: https://www.learntechlib.org/primary/p/184395/
  4. Kastrati Z, Dalipi F, Imran AS, Nuci KP, Wani MA. Sentiment Analysis of Students’ Feedback with NLP and Deep Learning: A Systematic Mapping Study. Applied Sciences. 2021;11(9):3986. Available from: https://doi.org/10.3390/app11093986
  5. Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A. Advances in pre-training distributed word representations. Computation and Language (cs.CL)arXiv. 2019;p. 52–57. Available from: https://doi.org/10.48550/arXiv.1712.09405
  6. Zhao H, Liu Z, Yao X, Yang Q. A machine learning-based sentiment analysis of online product reviews with a novel term weighting and feature selection approach. Information Processing and Management. 2021;58(5):102656. Available from: https://doi.org/10.1016/j.ipm.2021.102656
  7. Bernabé-Moreno J, Tejeda-Lorente A, Herce-Zelaya J, Porcel C, Herrera-Viedma E. A context-aware embeddings supported method to extract a fuzzy sentiment polarity dictionary. Knowledge-Based Systems. 2020;190:105236. Available from: https://doi.org/10.1016/j.knosys.2019.105236
  8. Ramírez-Tinoco FJ, Alor-Hernández G, Sánchez-Cervantes JL, Salas-Zárate MDP, Valencia-García R. Use of Sentiment Analysis Techniques in Healthcare Domain. In: AHG, SCJ, RGA, VGR., eds. Studies in Computational Intelligence. (pp. 189-212) Springer International Publishing. 2019.
  9. Frizzo-Barker J, Chow-White PA, Adams PR, Mentanko J, Ha D, Green SE. Blockchain as a disruptive technology for business: A systematic review. International Journal of Information Management. 2020;51:102029. Available from: https://doi.org/10.1016/j.ijinfomgt.2019.10.014
  10. Jatain D, Singh V, Dahiya N. A multi-perspective micro-analysis of popularity trend dynamics for user-generated content. Social Network Analysis and Mining. 2022;12(1):147. Available from: https://doi.org/10.1007/s13278-022-00969-7
  11. Divya, Singh V, Dahiya N. Computational Intelligence Techniques for Big Data Analytics: A Contemplative Perspective. In: Lecture Notes in Electrical Engineering. (Vol. 2022, pp. 391-400) Springer Singapore. 2022.
  12. Basiri ME, Nemati S, Abdar M, Asadi S, Acharrya UR. A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets. Knowledge-Based Systems. 2021;228:107242. Available from: https://doi.org/10.1016/j.knosys.2021.107242
  13. Muhammad PF, Kusumaningrum R, Wibowo A. Sentiment Analysis Using Word2vec And Long Short-Term Memory (LSTM) For Indonesian Hotel Reviews. Procedia Computer Science. 2021;179:728–735. Available from: https://doi.org/10.1016/j.procs.2021.01.061
  14. Xu H, Liu B, Shu L, Yu PS. Lifelong Domain Word Embedding via Meta-Learning. arXiv. 2018. Available from: https://doi.org/10.48550/arXiv.1805.09991
  15. Han Y, Moghaddam M. Analysis of sentiment expressions for user-centered design. Expert Systems with Applications. 2021;171:114604. Available from: https://doi.org/10.1016/j.eswa.2021.114604
  16. Hu M, Peng Y, Huang Z, Li D, Lv Y. Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019. Available from: https://aclanthology.org/P19-1051
  17. Liu M, Li L, Hu H, Guan W, Tian J. Image caption generation with dual attention mechanism. Information Processing & Management. 2020;57(2):102178. Available from: https://doi.org/10.1016/j.ipm.2019.102178
  18. Yu LC, Lee CW, Pan HI, Chou CY, Chao PY, Chen ZH, et al. Improving early prediction of academic failure using sentiment analysis on self-evaluated comments. Journal of Computer Assisted Learning. 2018;34(4):358–365. Available from: https://doi.org/10.1111/jcal.12247
  19. Chauhan GS, Agrawal P, Meena YK. Aspect-Based Sentiment Analysis of Students’ Feedback to Improve Teaching–Learning Process. Information and Communication Technology for Intelligent Systems. 2019;2:259–266. Available from: https://doi.org/10.1007/978-981-13-1747-7_25
  20. Kastrati Z, Imran AS, Kurti A. Weakly Supervised Framework for Aspect-Based Sentiment Analysis on Students’ Reviews of MOOCs. IEEE Access. 2020;8:106799–106810. Available from: https://doi.org/10.1109/ACCESS.2020.3000739
  21. Dessì D, Dragoni M, Fenu G, Marras M, Recupero R, D. Deep Learning Adaptation with Word Embeddings for Sentiment Analysis on Online Course Reviews. 2020. Available from: https://doi.org/10.1007/978-981-15-1216-2_3


© 2023 Jatain & Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.