• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 37, Pages: 2871-2879

Original Article

An Intelligent Groundwater Management Recommender System

Received Date:18 July 2021, Accepted Date:21 October 2021, Published Date:09 November 2021


Objectives: To explore the area of groundwater that can assist to improve the accessibility of freshwater. Methods : We propose a machine-deep learning model based on a recommender system to manage and classify groundwater. Finding: The main goal of our proposed approach is to classify groundwater into multi-labels, which are drinking water (Excellent or Good) or Irrigation water (Poor or Very Poor) with guarantee a higher accuracy score. The recommender system is applied on the testing dataset and the accuracy of the deep learning technique was 91% and the accuracy of machine leaning technique was 84%.

Keywords: Groundwater Management; Intelligent System; Recommender Systems; Datamining; Machine Learning; Deep Learning


  1. Sahraei A, Chamorro A, Kraft P, Breuer L. Application of Machine Learning Models to Predict Maximum Event Water Fractions in Streamflow. Frontiers in Water. 2021;3:52. Available from: https://dx.doi.org/10.3389/frwa.2021.652100
  2. Mohapatra JB, Jha P, Jha MK, Biswal S. Efficacy of machine learning techniques in predicting groundwater fluctuations in agro-ecological zones of India. Science of The Total Environment. 2021;785:147319. Available from: https://dx.doi.org/10.1016/j.scitotenv.2021.147319
  3. Singha S, Pasupuleti S, Singha SS, Singh R, Kumar S. Prediction of groundwater quality using efficient machine learning technique. Chemosphere. 2021;276:130265. Available from: https://dx.doi.org/10.1016/j.chemosphere.2021.130265
  4. Hou D, Song X, Zhang G, Zhang H, Loaiciga H. An early warning and control system for urban, drinking water quality protection: China’s experience. Environmental Science and Pollution Research. 2013;20(7):4496–4508. Available from: https://dx.doi.org/10.1007/s11356-012-1406-y
  5. Bassiliades N, Antoniades I, Hatzikos E, Vlahavas I, Koutitas G. An Intelligent System for Monitoring and Predicting Water Quality. In: Proc. Of the European conference TOWARDS eENVIRONMENT. (pp. 534-542) 2009.
  6. Sophia SGG, Sharmila VC, Suchitra S, Muthu TS, Pavithra B. Water management using genetic algorithm-based machine learning. Soft Computing. 2020;24(22):17153–17165. Available from: https://dx.doi.org/10.1007/s00500-020-05009-0
  7. Alahmadi FS. Groundwater Quality Categorization by Unsupervised Machine Learning in Madinah. Proceedings of the International Geoinformatics Conference (IGC2019). 2019. Available from: www.researchgate.net/publication/332244617
  8. Yuvaraj N, Anusha K, Meagavarsha R. Healthcare Recommendation System for Water AffectedHabitations using Machine Learning Algorithms. International Journal of Pure and Applied Mathematics. 2018;118(20):3797–3809. Available from: https://acadpubl.eu/hub/2018-118-21/articles/21e/10.pdf
  9. Adnan S, Iqbal J, Maltamo M, Bacha MS, Shahab A, Valbuena R. A Simple Approach of Groundwater Quality Analysis, Classification, and Mapping in Peshawar, Pakistan. Environments. 2019;6(12):123. Available from: https://dx.doi.org/10.3390/environments6120123
  10. Salman AS, Zaidi FK, Hussein MT. Evaluation of groundwater quality in northern Saudi Arabia using multivariate analysis and stochastic statistics. Environmental Earth Sciences. 2015;74(12):7769–7782. Available from: https://dx.doi.org/10.1007/s12665-014-3803-7
  11. Kolli K, Seshadri R. Ground Water Quality Assessment using Data Mining Techniques. International Journal of Computer Applications. 2013;76(15):39–45. Available from: https://dx.doi.org/10.5120/13324-0885
  12. Al-Omran A, Al-Barakah F, Altuquq A, Aly A, Nadeem M. Drinking water quality assessment and water quality index of Riyadh, Saudi Arabia. Water Quality Research Journal. 2015;50(3):287–296. Available from: https://dx.doi.org/10.2166/wqrjc.2015.039
  13. Khater AEM, Al-Jaloud A, El-Taher A. Quality Level of Bottled Drinking Water Consumed in Saudi Arabia. Journal of Environmental Science and Technology. 2014;7(2):90–106. Available from: https://dx.doi.org/10.3923/jest.2014.90.106
  14. Mallick J, Singh CK, Almesfer MK, Singh VP, Alsubih M. Groundwater Quality Studies in the Kingdom of Saudi Arabia: Prevalent Research and Management Dimensions. Water. 1266;13(9):1266. Available from: https://doi.org/ 10.3390/w13091266
  15. Pawlicka A, Pawlicki M, Kozik R, Choraś RS. A Systematic Review of Recommender Systems and Their Applications in Cybersecurity. Sensors. 2021;21(15):5248. Available from: https://dx.doi.org/10.3390/s21155248
  16. Fayyaz Z, Ebrahimian M, Nawara D, Ibrahim A, Kashef R. Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities. Applied Sciences. 2020;10(21):7748. Available from: https://dx.doi.org/10.3390/app10217748
  17. Sharma RK, Kalita HK, Borah P. Analysis of Machine Learning Techniques Based Intrusion Detection Systems. Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics. 2016;p. 485–493.
  18. Keller JM, Gray MR, Givens JA. A fuzzy K-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics. 1985;SMC-15(4):580–585. Available from: https://dx.doi.org/10.1109/tsmc.1985.6313426
  19. CS, GIW., eds. Decision Stump. (pp. 262-263) Springer US. 2010.
  20. Mahmood MA, Al-Shammari ET, El-Bendary N, Hassanien AE, Hefny HA. Recommender system for ground-level Ozone predictions in Kuwait. In: 2013 Federated Conference on Computer Science and Information Systems. p. 107–110.
  21. Mahmood MA, El-Bendary N, Platoš J, Hassanien AE, Hefny HA. An Intelligent Multi-agent Recommender System. Innovations in Bio-inspired Computing and Applications. 2014;p. 201–213. Available from: https://link.springer.com/chapter/10.1007/978-3-319-01781-5_19


© 2021 A A Abd El-Aziz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.