• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 34, Pages: 2719-2729

Original Article

An optimized Model for Heart Disease Prediction with Customized Ensemble Voting Classifier and Nature Inspired Optimization

Received Date:10 May 2023, Accepted Date:03 August 2023, Published Date:14 September 2023


Objective: To develop an optimized model for prediction of heart disease. Methods/findings: The model has been built applying Customized Ensemble Voting Classifier where the weights of each base classifier have been calculated considering accuracy, specificity and sensitivity. For feature selection Chi Square method has been applied. The performance of the model has been enhanced using Firefly algorithm. The proposed model has achieved 85.52% accuracy. Novelty: The novelty of our research paper on heart disease prediction lies in the integration of machine learning algorithms to develop an accurate predictive model. Multiple classifiers have grouped together through a customized ensemble voting classifier. For assigning the weight not only accuracy is considered but also specificity and sensitivity scores have also been considered and then performance has been optimized with Firefly algorithm which makes the method comprehensive and reliable for predicting heart disease risk and could ultimately lead to more effective prevention and treatment strategies.

Keywords: Chi Square; Ensemble Voting Classifier; Firefly Algorithm


  1. Bharti R, Khamparia A, Shabaz M, Dhiman G, Pande S, Singh P. Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning. Available from: https://doi.org/10.1155/2021/8387680
  2. Karthick K, Aruna SK, Samikannu R, Kuppusamy R, Teekaraman Y, Thelkar AR. Implementation of a Heart Disease Risk Prediction Model Using Machine Learning. Computational and Mathematical Methods in Medicine. 2022;2022:1–14. Available from: https://doi.org/10.1155/2022/6517716
  3. Grampurohit S, Sagarnal C. Disease Prediction using Machine Learning Algorithms. 2020 International Conference for Emerging Technology (INCET). 2020;p. 1–7. Available from: https://doi.org/10.1109/INCET49848.2020.9154130
  4. Guda V, Shalini K, Shivani C. Heart Disease Prediction Using Hybrid Technique. Journal of Interdisciplinary Cycle Research. 2020;XII.
  5. Kasabe R, Narang G. Heart Disease Prediction using Machine Learning. International Journal Of Engineering Research Technology . 2020;09(08).
  6. Bhatt CM, Patel P, Ghetia T, Mazzeo PL. Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms. 2023;16(2):88. Available from: https://doi.org/10.3390/a16020088
  7. Jaffer S, Pasha S, SLK. Heart Disease Prediction using. Machine Learning International Journal of Advanced Research in Computer and Communication Engineering. 2021;10. Available from: https://doi.org/10.17148/IJARCCE.2021.10727
  8. Mane V, Tobre Y, Bonde S, Patil A, Sakhare P. Heart Disease Prediction Using Machine Learning and Neural Networks. In: S, PK, S, KP, T, AK, et al. , eds. Computer Vision and Robotics. (pp. 205-228) Springer Nature Singapore. 2023.
  9. Louridi N, Douzi S, Ouahidi BE. Machine learning-based identification of patients with a cardiovascular defect. Journal of Big Data. 2021;8(1):133. Available from: https://doi.org/10.1186/s40537-021-00524-9
  10. Hashi EK, Zaman MSU. Developing a Hyperparameter Tuning Based Machine Learning Approach of Heart Disease Prediction. Journal of Applied Science & Process Engineering. 2020;7(2):631–647. Available from: https://doi.org/10.33736/jaspe.2639.2020
  11. Amin SU, Agarwal K, Beg R. Genetic neural network based data mining in prediction of heart disease using risk factors. Proceedings of 2013 IEEE Conference on Information and Communication Technologies. 2013;p. 1227–1231. Available from: https://doi.org/10.1109/CICT.2013.6558288
  12. Khourdifi Y, Bahaj M. Heart Disease Prediction and Classification Using Machine Learning Algorithms Optimized by Particle Swarm Optimization and Ant Colony Optimization. International Journal of Intelligent Engineering and Systems. 2019;12(1):242–252. Available from: https://doi.org/10.22266/ijies2019.0228.24
  13. Sajja TK, Kalluri HK. A Deep Learning Method for Prediction of Cardiovascular Disease Using Convolutional Neural Network. International Information and Engineering Technology Association. 2020;34(5):601–606. Available from: https://doi.org/10.18280/ria.340510
  14. Subramani S, Varshney N, Anand MV, Soudagar MEM, Al-Keridis LA, Upadhyay TK, et al. Cardiovascular diseases prediction by machine learning incorporation with deep learning. Frontiers in Medicine. 2023;10. Available from: https://doi.org/10.3389/fmed.2023.1150933
  15. Majumder AB, Gupta S, Singh D, Majumder S. An Explainable Hybrid Intelligent System for Prediction of Cardiovascular Disease. Journal of Mines, Metals and Fuels. 2023;71(5):687–694. Available from: https://doi.org/10.18311/jmmf/2023/34171


© 2023 Majumder et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.