• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 26, Pages: 2678-2685

Original Article

Analysis of total hydrocarbon and heavy metal accumulation in sediment, water and associated organisms of Mangrove ecosystem in the Niger Delta

Received Date:31 May 2020, Accepted Date:22 June 2020, Published Date:30 July 2020

Abstract

Background /Objectives: This study's objectives are (1) to determine the total hydrocarbon (THC) and heavy metals in sediment and water samples collected from mangrove forest at different locations; (2) to compare the THC and heavy metals across different mangrove associated species; (3) to compare the relationship between THC and heavy metals in different organisms across different locations and (4) to determine the THC and heavy metal concentration between vertebrates and invertebrate organisms in mangrove forest. Methods/ Statistical analysis: It is hypothesized that chemical contamination will bioaccumulate across multiple mangrove associated organisms. Physicochemical analysis for Cadmium (Cd), Zinc (Zn), Lead (Pb), Iron (Fe) and total hydrocarbon (THC), was carried out on sediment, water, crabs, fish, insect, anadara and bird droppings, and was measured by spectrophotometric method using HACH DR 890 colorimeter and microwave accelerated reaction system (MARS Xpress, North Carolina). Findings: There was a significant difference in chemical composition between mangrove associated species (F4, 145 = 2.83, P=0.03). Anadara has the highest THC (36.44±9/4mg/kg) and Iron (6.97±1.32mg/kg) concentrations while bird droppings had the highest Lead concentration (10.83±1.27mg/kg). Fish had the highest Cadmium (4.20±1.01mg/kg) and Zinc (15.88±5.53mg/kg) concentrations. The order of organisms contamination is anadara>fish>bird droppings>crab>insect. The order of metal concentration is THC>Zn>Pb>Fe>Cd. In contrast, there was no significant difference between vertebrate and invertebrate organisms (F1, 148 = 0.08, P=0.78). Vertebrates have higher chemical composition (Cd, Pb and Zn) as compared to invertebrates (Fe and THC). Application/Improvement: Concentration of THC and heavy metals in most mangroves species were above the FAO/WHO standards. This implies that there is a horizontal THC and heavy metal contamination across trophic levels, which is detrimental to public health.

Keywords: Bioaccumulation; heavy metals; invertebrates; Niger delta; pollution; vertebrates

 

 

References

  1. Nwilo PC, Badejo OT. Oil spill problems and management in the Niger Delta. In: International Oil Spill Conference Proceedings. (pp. 567-570) American Petroleum Institute. International Oil Spill Conference. 2005.
  2. Haack RC, Sundararaman P, Diedjomahor JO, Xiao H, Gant NJ, May ED, et al. Chapter 16: Niger Delta Petroleum Systems, Nigeria. In: AAPG Memoir 73. 2000.
  3. Ohimain EI, Jonathan G, Abah SO. Variations in heavy metal concentrations following the dredging of an oil well access canal in the Niger Delta. Advances in Biological Research. 2008;2(5-6):97–103.
  4. Yang E, Yi S, Bai F, Niu D, Zhong J, Wu Q, et al. Cloning, Characterization and Expression Pattern Analysis of a Cytosolic Copper/Zinc Superoxide Dismutase (SaCSD1) in a Highly Salt Tolerant Mangrove (Sonneratia alba) International Journal of Molecular Sciences. 2015;17(1):4. Available from: https://dx.doi.org/10.3390/ijms17010004
  5. Numbere AO, Camilo GR. Effect of Temperature and Precipitation on Global Mangrove <i>Rhizophora</i> Species Distribution. American Journal of Environmental Sciences. 2017;13(5):342–350. Available from: https://dx.doi.org/10.3844/ajessp.2017.342.350
  6. Lymburner L, Bunting P, Lucas R, Scarth P, Alam I, Phillips C, et al. Mapping the multi-decadal mangrove dynamics of the Australian coastline. Remote Sensing of Environment. 2020;238:111185. Available from: https://dx.doi.org/10.1016/j.rse.2019.05.004
  7. Bunt JS. Introduction. In: Tropical Mangrove Ecosystem. (pp. 1-6) American Geophysical Union. 1992.
  8. Spalding M, Kainuma M, Collins L. Earthscan.
  9. Iuit LRC, Machkour-M’Rabet S, Espinoza-Ávalos J, Hernández-Arana HA, López-Adame H, Hénaut Y. Genetic Structure and Connectivity of the Red Mangrove at Different Geographic Scales through a Complex Transverse Hydrological System from Freshwater to Marine Ecosystems. Diversity. 2020;12(2):48. Available from: https://dx.doi.org/10.3390/d12020048
  10. Numbere AO. Utilization of the mangrove forest for sustainable renewable energy production. Progress in Petrochemical Science. 2020;3:324–329. Available from: https://doi.org/10.31031/PPS.2020.03.000561
  11. Patra JK, Mohanta YK. Antimicrobial compounds from mangrove plants: A pharmaceutical prospective. Chinese Journal of Integrative Medicine. 2014;20(4):311–320. Available from: https://dx.doi.org/10.1007/s11655-014-1747-0
  12. Kimura N, Kainuma M, Inoue T, Chan EW, Tangah J, Baba K, et al. Botany, uses, chemistry and bioactivities of mangrove plants V: Acrostichum aureum and A. speciosum. ISME/GLOMIS Electronic Journal. 2017;15:1–6. Available from: https://doi.org/10.1007/s11655-014-1747-0
  13. Ibe AC. The Niger Delta and sea-level rise. In: Sea-level rise and coastal subsidence. (pp. 249-267) Springer. 1996.
  14. Thongtham N, Kristensen E. Carbon and nitrogen balance of leaf-eating sesarmid crabs (Neoepisesarma versicolor) offered different food sources. Estuarine, Coastal and Shelf Science. 2005;65(1-2):213–222. Available from: https://dx.doi.org/10.1016/j.ecss.2005.05.014
  15. Alfaro AC, Thomas F, Sergent L, Duxbury M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science. 2006;70:271–286. Available from: https://dx.doi.org/10.1016/j.ecss.2006.06.017
  16. Obida CB, Blackburn GA, Whyatt JD, Semple KT. Quantifying the exposure of humans and the environment to oil pollution in the Niger Delta using advanced geostatistical techniques. Environment International. 2018;111:32–42. Available from: https://dx.doi.org/10.1016/j.envint.2017.11.009
  17. Alonso-Mejia A, Marquez M. Dragonfly Predation on Butterflies in a Tropical Dry Forest. Biotropica. 1994;26(3):341. Available from: https://dx.doi.org/10.2307/2388856
  18. Turlings TCJ, Tumlinson JH, Lewis WJ. Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps. Science. 1990;250(4985):1251–1253. Available from: https://dx.doi.org/10.1126/science.250.4985.1251
  19. Kapiris PG, Mathioulakis DS. Experimental study of vortical structures in a periodically perturbed flow over a backward-facing step. International Journal of Heat and Fluid Flow. 2014;47:101–112. Available from: https://dx.doi.org/10.1016/j.ijheatfluidflow.2014.03.004
  20. Patankar P, Desai I, Shinde K, Suresh B. Ecology and breeding biology of the Cattle Egret Bubulcus ibis in an industrial area at Vadodara, Gujarat. Zoos' Print Journal. 2007;22:2885–2888. Available from: https://dx.doi.org/10.11609/jott.zpj.1566.2885-8
  21. Diop ES, Gordon C, Semesi AK, Soumare A, Diallo N, Guisse A, et al. Mangrove of Africa. In: Mangrove ecosystems. (pp. 63-121) Springer. 2002.
  22. APHA. APHA Standard method for the examination of water and waste water (19). Ed. Washington, DC. American Public Health Association. 1985.
  23. Aigberua A, Tarawou T. Speciation and mobility of selected heavy metals in sediments of the nun river system. Nigeria. Environmental and Toxicology Studies Journal. 2018;2(1):1–9.
  24. Logan M. Biostatistical design and analysis using R: a practical guide. England. John Wiley and Sons. 2010.
  25. FAO/WHO. Joint food standards programme codex committee on contaminants in food Working Document for Information and Use in Discussions Related to Contaminants and Toxins in the GSTFF. (Vol. 89) 2011.
  26. Boris OH. Upsurge of oil theft and illegal bunkering in the Niger Delta region of Nigeria: is there a way out. Mediterranean Journal of Social Sciences. 2009;(352) 563–573.
  27. Bayen S, Estrada ES, Zhang H, Lee WK, Juhel G, Smedes F, et al. Partitioning and Bioaccumulation of Legacy and Emerging Hydrophobic Organic Chemicals in Mangrove Ecosystems. Environmental Science & Technology. 2019;53:2549–2558. Available from: https://dx.doi.org/10.1021/acs.est.8b06122
  28. Zuykov M, Pelletier E, Harper DAT. Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring. Chemosphere. 2013;93(2):201–208. Available from: https://dx.doi.org/10.1016/j.chemosphere.2013.05.001
  29. EL-Shenawy NS, Loutfy N, Soliman MFM, Tadros MM, El-Azeez AAA. Metals bioaccumulation in two edible bivalves and health risk assessment. Environmental Monitoring and Assessment. 2016;188:139. Available from: https://dx.doi.org/10.1007/s10661-016-5145-2
  30. Ragi AS, Leena PP, Cheriyan E, Nair SM. Heavy metal concentrations in some gastropods and bivalves collected from the fishing zone of South India. Marine Pollution Bulletin. 2017;118:452–458. Available from: https://dx.doi.org/10.1016/j.marpolbul.2017.03.029
  31. Li J, Yu H, Luan Y. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water. International Journal of Environmental Research and Public Health. 2015;12(12):14958–14973. Available from: https://dx.doi.org/10.3390/ijerph121214959
  32. Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M. Can Excrement and Feathers of Nestling Songbirds Be Used as Biomonitors for Heavy Metal Pollution? Archives of Environmental Contamination and Toxicology. 2000;39:541–546. Available from: https://dx.doi.org/10.1007/s002440010138

Copyright

© 2020 Numbere. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.