• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 46, Pages: 4378-4387

Original Article

Analyzing Color Features to Realize Adaptive Contour Model for Segmentation

Received Date:19 May 2023, Accepted Date:27 September 2023, Published Date:15 December 2023


Background/Objectives: Melanoma cases have taken a sharp rise in recent years all across the world which is the reason of concern for many health institutions and the most concerning subject for many medical experts is its high mortality rate which causes thousands of lives every year. The main objective is to develop and evaluate a new system which can detect melanoma at an earlier stage. Methods: An efficient lesion segmentation method is introduced for the detection of Melanoma skin cancer disease at the preliminary stages using Adaptive Contour Model (ACM). The dataset used here is PH2 and ISIC Challenge 2017 Dataset images. 800 images are considered for the testing. High-quality segmentation is achieved based on contour features and sharp edge detection using ACM. An image is segregated into two set functions to analyze PH2 and ISIC Challenge 2017 Dataset images. Findings: The performance of the proposed Adaptive Contour Model (ACM) is tested upon PH2 and ISIC Challenge 2017 Dataset. The Performance matrices for the segmentation process are index (JA) is 79.23, the Dice coefficient (DI) is 87.26, and the accuracy (AC) is 94.63 considering ISIC dataset. The performance indices are such as index (JA) is 89.14, the Dice coefficient (DI) is 93.98, and the accuracy (AC) is 96.95 which is quite high considering PH2 dataset. Novelty: A method for detection of melanoma has been the critical need of the day. There are various findings available for segmentation of a medical image. However, there is a need for a method where it is applicable when the threshold based method may not be effective. This proposed method shows that the performance of the Active Contour Model (ACM) is more than 95%, which is better than other methods which lie around 92 to 94 percent.

Keywords: Contour Features, Adaptive Contour Model, Lesion Segmentation, Melanoma, Dermoscopic Images


  1. Pham TC, Tran GS, Nghiem TP, Doucet A, Luong CM, Hoang VD. A Comparative Study for Classification of Skin Cancer. In: 2019 International Conference on System Science and Engineering (ICSSE). (pp. 267-272) IEEE. 2019.
  2. Cancer Statistics Center. American Cancer Society. Available from: https://cancerstatisticscenter.cancer.org
  3. Tanwar, Raman V&, Balasubramanian &, Rajput, Bhargava R. CryptoLesion: A Privacy-preserving Model for Lesion Segmentation Using Whale Optimization over Cloud. ACM Transactions on Multimedia Computing, Communications, and Applications. 2020;16(2):1–23. Available from: https://doi.org/10.1145/3380743
  4. Xie Y, Zhang J, Xia Y, Shen C. A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification. IEEE Transactions on Medical Imaging. 2020;39(7):2482–2493. Available from: https://ieeexplore.ieee.org/document/8990108
  5. Wei Z, Song H, Chen L, Li Q, Han G. Attention-Based DenseUnet Network With Adversarial Training for Skin Lesion Segmentation. IEEE Access. 2019;7:136616–136629. Available from: https://ieeexplore.ieee.org/document/8835031
  6. Khan MQ, Hussain A, Rehman SU, Khan U, Maqsood M, Mehmood K, et al. Classification of Melanoma and Nevus in Digital Images for Diagnosis of Skin Cancer. IEEE Access. 2019;7:90132–90144. Available from: https://ieeexplore.ieee.org/document/8756036/authors#authors
  7. Goyal M, Oakley A, Bansal P, Dancey D, Yap MH. Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods. IEEE Access. 2019;8:4171–4181. Available from: https://ieeexplore.ieee.org/document/8936444
  8. Wang X, Jiang X, Ding H, Liu J. Bi-Directional Dermoscopic Feature Learning and Multi-Scale Consistent Decision Fusion for Skin Lesion Segmentation. IEEE Transactions on Image Processing. 2019;29:3039–3051. Available from: https://ieeexplore.ieee.org/document/8917805?denied=
  9. Berkay M, Mergen EH, Binici RC, Bayhan Y, Gungor A, Okur E, et al. Deep Learning based Melanoma Detection from Dermoscopic Images. In: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). (pp. 1-4) IEEE. 2019.
  10. Gessert N, Sentker T, Madesta F, Schmitz R, Kniep H, Baltruschat I, et al. Skin Lesion Classification Using CNNs With Patch-Based Attention and Diagnosis-Guided Loss Weighting. IEEE Transactions on Biomedical Engineering. 2020;67(2):495–503. Available from: https://ieeexplore.ieee.org/document/8710336
  11. Yang C, Wu L, Chen Y, Wang G, Weng G. An Active Contour Model Based on Retinex and Pre-Fitting Reflectance for Fast Image Segmentation. Symmetry. 2022;14(11):1–25. Available from: https://doi.org/10.3390/sym14112343
  12. Fang L, Wang X, Zhao M. Integrated vector-valued active contour model for image segmentation. Signal, Image and Video Processing. 2022;16(1):193–201. Available from: https://doi.org/10.1007/s11760-021-01979-2
  13. Peng Y, Wang N, Wang Y, Wang M. Segmentation of dermoscopy image using adversarial networks. Multimedia Tools and Applications. 2019;78(8):10965–10981. Available from: https://doi.org/10.1007/s11042-018-6523-2
  14. Xie F, Yang J, Liu J, Jiang Z, Zheng Y, Wang Y. Skin lesion segmentation using high-resolution convolutional neural network. Computer Methods and Programs in Biomedicine. 2020;186:105241. Available from: https://doi.org/10.1016/j.cmpb.2019.105241
  15. Goyal M, Oakley A, Bansal P, Dancey D, Yap MH. Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods. IEEE Access. 2019;8:4171–4181. Available from: https://ieeexplore.ieee.org/document/8936444
  16. Tang Y, Fang Z, Yuan S, Zhan C, Xing Y, Zhou JT, et al. iMSCGnet: Iterative Multi-Scale Context-Guided Segmentation of Skin Lesion in Dermoscopic Images. IEEE Access. 2020;8:39700–39712. Available from: https://ieeexplore.ieee.org/document/9007375
  17. Li H, He X, Zhou F, Yu Z, Ni D, Chen S, et al. Dense Deconvolutional Network for Skin Lesion Segmentation. IEEE Journal of Biomedical and Health Informatics. 2019;23(2):527–537. Available from: https://ieeexplore.ieee.org/document/8419237
  18. Wang H, Wang G, Sheng Z, Zhang S. Automated Segmentation of Skin Lesion Based on Pyramid Attention Network. In: International Workshop on Machine Learning in Medical Imaging, MLMI 2019, Lecture Notes in Computer Science. (Vol. 11861, pp. 435-443) Springer, Cham. 2019.


© 2023 Srikanteswara & Ramachandra. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.