• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 16, Pages: 729-735

Original Article

Application of Aquatic Plants Dead Biomass in Remediation of Heavy Metals Pollution by Adsorption: A Review

Received Date:11 January 2022, Accepted Date:21 March 2022, Published Date:02 May 2022

Abstract

Objectives: To figure out the sources of heavy metals pollution in water bodies, their toxicity, and utilization of aquatic plants’ dead biomass as adsorbents for heavy metals removal. In addition, this review also explains the adsorption mechanism through adsorption isotherms and kinetics. Methods: Various research papers related to aquatic plant adsorbents from various sources have been compiled to assess the adsorption capacity of heavy metals from synthetic solutions as well as from the wastewater. Findings: The adsorption using aquatic plants as adsorbents were found to be an economic and environment-friendly method for heavy metal adsorption from wastewater as aquatic plants grow rapidly and are found abundantly. The efficacy of these adsorbents has been increased by various researchers by modifying them via chemical treatment and nanotechnology. It was found that adsorbent derived from various aquatic plants like Eichhornia crassipes, Pistia stratiotes, Ceratophyllum demersum, Spirodela polyrhiza, Lemna minor, etc. shows good adsorption potential for heavy metal removal. Novelty: The research data on adsorption shows that the dead biomass of these plants can be capable for elimination of heavy metals from aqueous solutions. As some of the aquatic plants are invasive and compete with the native species, not desirable for the aquatic ecosystem, so utilization of aquatic plants provides double benefits.

Keywords: Adsorption; Heavy metal; Aquatic plant; Adsorbent; Adsorption capacity

References

  1. Preetha SS, Kaladevi V. Phytoremediation of heavy metals using aquatic macrophytes. World Journal of Environmental Biosciences. 2014;3(1):34–41.
  2. Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, et al. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In: Environmental Biotechnology: For Sustainable Future. (pp. 103-125) Springer Singapore. 2019.
  3. Karaouzas I, Kapetanaki N, Mentzafou A, Kanellopoulos TD, Skoulikidis N. Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere. 2021;263:128192. Available from: https://dx.doi.org/10.1016/j.chemosphere.2020.128192
  4. Bhat RA, Singh DV, Qadri H, Dar GH, Dervash MA, Bhat SA, et al. Vulnerability of municipal solid waste: An emerging threat to aquatic ecosystems. Chemosphere. 2022;287:132223. Available from: https://dx.doi.org/10.1016/j.chemosphere.2021.132223
  5. Srivastava J, Gupta A, Chandra H. Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Bio/Technology. 2008;7(3):255–266. Available from: https://dx.doi.org/10.1007/s11157-008-9135-x
  6. Mustafa HM, Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal. 2021;12(1):355–365. Available from: https://dx.doi.org/10.1016/j.asej.2020.05.009
  7. Musico YLF, Santos CM, Dalida MLP, Rodrigues DF. Improved removal of lead(ii) from water using a polymer-based graphene oxide nanocomposite. Journal of Materials Chemistry A. 2013;1(11):3789. Available from: https://dx.doi.org/10.1039/c3ta01616a
  8. Thitame PV, Shukla SR. Removal of lead (II) from synthetic solution and industry wastewater using almond shell activated carbon. Environmental Progress & Sustainable Energy. 2017;36(6):1628–1633. Available from: https://dx.doi.org/10.1002/ep.12616
  9. Shah BA, Shah AV, Singh RR. Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. International Journal of Environmental Science & Technology. 2009;6(1):77–90. Available from: https://dx.doi.org/10.1007/bf03326062
  10. Singh A, Kumar S, Panghal V, Arya SS, Kumar S. Utilization of unwanted terrestrial weeds for removal of dyes. Rasayan Journal of Chemistry. 2019;12(04):1956–1963. Available from: https://dx.doi.org/10.31788/rjc.2019.1245401
  11. Park D, Yun YS, Park JM. The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering. 2010;15(1):86–102. Available from: https://dx.doi.org/10.1007/s12257-009-0199-4
  12. Lima LK, Silva JF, Silva D, Vieira MG, MG. Lead biosorption by salvinia natans biomass: equilibrium study. Chemical Engineering Transactions. 2014;38:97–102. Available from: https://doi.org/10.3303/CET1438017
  13. Babu DJ, Sumalatha B, Venkateswarulu TC, Das KM, Kodali VP. Kinetic, equilibrium and thermodynamic studies of biosorption of Chromium (VI) from aqueous solutions using Azolla Filiculoidus. Journal of Pure and Applied Microbiology. 2014;8(4):3107–3116.
  14. Mishra A, Tripathi BD, Rai AK. Biosorption of Cr(VI) and Ni(II) onto Hydrilla verticillata dried biomass. Ecological Engineering. 2014;73:713–723. Available from: https://dx.doi.org/10.1016/j.ecoleng.2014.09.057
  15. Ahmadi M, Jaafarzadeh N, Teymouri P, Babaei AA, Alavi N. Biosorption of cadmium (II) from aqueous solution by NaCl-treated Ceratophyllum demersum. Environmental Engineering and Management Journal. 2014;13(4):763–773. Available from: https://dx.doi.org/10.30638/eemj.2014.081
  16. Galadima LG, Wasagu R, Lawal M, Aliero A, Magajo UF, Suleman H. Biosorption activity of Nymphaea lotus (water lily) The International Journal of Engineering and Science. 2015;4(3):66–70.
  17. Tang Y, Chen L, Wei X, Yao Q, Li T. Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr. Journal of Hazardous Materials. 2013;244-245:603–612. Available from: https://dx.doi.org/10.1016/j.jhazmat.2012.10.047
  18. Balasubramanian UM, Murugaiyan SV, Marimuthu T. Enhanced adsorption of Cr(VI), Ni(II) ions from aqueous solution using modified Eichhornia crassipes and Lemna minor. Environmental Science and Pollution Research. 2020;27:20648–20662. Available from: https://dx.doi.org/10.1007/s11356-019-06357-7
  19. Ferreira RdM, Souza MDPd, Takase I, Stapelfeldt DMdA. Pb(II) adsorption by biomass from chemically modified aquatic macrophytes, Salvinia sp. and Pistia stratiotes. Water Science and Technology. 2016;73(11):2670–2679. Available from: https://dx.doi.org/10.2166/wst.2016.107
  20. Lesage E, Mundia C, Rousseau DPL, Moortel AMKVd, Laing GD, Meers E, et al. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecological Engineering. 2007;30(4):320–325. Available from: https://dx.doi.org/10.1016/j.ecoleng.2007.04.007
  21. Ragossnig AM, Schneider DR. Circular economy, recycling and end-of-waste. Waste Management & Research: The Journal for a Sustainable Circular Economy. 2019;37(2):109–111. Available from: https://dx.doi.org/10.1177/0734242x19826776
  22. Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum) Process Biochemistry. 2003;39(2):179–183. Available from: https://dx.doi.org/10.1016/s0032-9592(03)00045-1
  23. Salman AA, Ayatolla NO, Naser J. Potential of Azolla filiculoides in the removal of Ni and Cu from wastewaters. African Journal of Biotechnology. 2012;11(95):16158–16164. Available from: https://dx.doi.org/10.5897/ajb12.2165
  24. Tang Y, Chen L, Wei X, Yao Q, Li T. Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr. Journal of Hazardous Materials. 2013;244-245:603–612. Available from: https://dx.doi.org/10.1016/j.jhazmat.2012.10.047
  25. Yi Z, Liu J, Liu X, Zeng R, Cui Y. Lead(II) removal from wastewater by water hyacinth. IOP Conference Series: Earth and Environmental Science. 2019;310(4):042015. Available from: https://dx.doi.org/10.1088/1755-1315/310/4/042015
  26. Arafat AA. Sorption of cobalt from aqueous solution by water hyacinth roots. International Journal of Natural Sciences. 2020;2(1):1–17.
  27. Jayarathne DLSM, Ariharan S, Iqbal SS, Thayaparan M. Isotherm Study for the Biosorption of Cd (II) from Aqueous Solution by the Aquatic Weed: Ceratophyllum demersum. Journal of Environmental Professionals Sri Lanka. 2015;4(2):10. Available from: https://dx.doi.org/10.4038/jepsl.v4i2.7859
  28. Lima LK, Pelosi BT, Silva MD, Vieira MG. Lead and chromium biosorption by Pistia stratiotes biomass. Chemical Engineering Transactions. 2013;32:1045–1050. Available from: https://doi.org/10.3303/CET1332175
  29. Qu W, He D, Guo Y, Tang Y, Shang J, Zhou L, et al. Adsorption of Ni2+ and Pb2+ from water using diethylenetriamine-grafted Spirodela polyrhiza: behavior and mechanism studies. Environmental Science and Pollution Research. 2019;26(33):34562–34574. Available from: https://dx.doi.org/10.1007/s11356-019-06558-0
  30. Li F, Shen K, Long X, Wen J, Xie X, Zeng X, et al. Preparation and Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous Solutions. PLOS ONE. 2016;11(2):e0148132. Available from: https://dx.doi.org/10.1371/journal.pone.0148132
  31. Nyamunda BC, Chivhanga T, Guyo U, Chigondo F. Removal of Zn (II) and Cu (II) Ions from Industrial Wastewaters Using Magnetic Biochar Derived from Water Hyacinth. Journal of Engineering. 2019;2019:1–11. Available from: https://dx.doi.org/10.1155/2019/5656983
  32. Balasubramanian UM, Murugaiyan SV, Marimuthu T. Enhanced adsorption of Cr(VI), Ni(II) ions from aqueous solution using modified Eichhornia crassipes and Lemna minor. Environmental Science and Pollution Research. 2020;27:20648–20662. Available from: https://dx.doi.org/10.1007/s11356-019-06357-7
  33. Carreño-Sayago UF. Development of microspheres using water hyacinth (Eichhornia crassipes) for treatment of contaminated water with Cr(VI) Environment, Development and Sustainability. 2021;23(3):4735–4746. Available from: https://dx.doi.org/10.1007/s10668-020-00776-0
  34. Yan FL, Wang Y, Wang WH, Zhao JX, Feng LL, Li JJ, et al. Application of biochars obtained through the pyrolysis of Lemna minor in the treatment of Ni-electroplating wastewater. Journal of Water Process Engineering. 2020;37:101464. Available from: https://dx.doi.org/10.1016/j.jwpe.2020.101464
  35. Ferreira RdM, Souza MDPd, Takase I, Stapelfeldt DMdA. Pb(II) adsorption by biomass from chemically modified aquatic macrophytes, Salvinia sp. and Pistia stratiotes. Water Science and Technology. 2016;73(11):2670–2679. Available from: https://dx.doi.org/10.2166/wst.2016.107

Copyright

© 2022 Singh & Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.