• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 6, Pages: 524-532

Original Article

Assessing Molecular Throughput and Efficiency through Simulation in Diffusion-Based Molecular Communication

Received Date:07 November 2023, Accepted Date:10 January 2024, Published Date:02 February 2024


Objectives: This study investigates the correlation of critical factors influencing throughput and efficiency in diffusion-based molecular communication systems. Method: The study presents a simulation model for 3-D diffusion-based molecular communication, incorporating essential parameters such as molecule size, transmission rate, diffusion rate, and transmitter-receiver distance. Findings: Through comprehensive simulations, the study reveals the effects of different parameters on throughput and efficiency in diffusion-based molecular communication. It highlights the critical trade-offs associated with system design and optimization. The study reveals the key factors influencing the transmission capabilities, the receiver congestion, and the overall efficiency of the communication system. Novelty: In this study, we give a study overview of the latest work of performance metrics in the field of molecular communication. A novel algorithm is proposed to find the throughput and efficiency of molecular communication. The proposed framework analyzes the intricate relationship between system parameters and performance metrics, emphasizing the potential for system optimization. Our simulation work demonstrates how the model parameters influence the performance of the molecular communication system, providing insights for enhancing the system's performance in applications such as targeted drug delivery in the future.

Keywords: Molecular Communication, Diffusion, Transmission Rate, Throughput, Efficiency


  1. Wang J, Yuan S, Zhou W, Daneshmand M, Peng M. Performance Analysis of Decode-and-Forward Relay in Diffusion Molecular Communication Systems. In: International Conference in Communications, Signal Processing, and Systems; CSPS 2018, Lecture Notes in Electrical Engineering . (Vol. 515, pp. 19-31) Springer, Singapore. 2019.
  2. Meng LSS, Yeh PCC, Chen KCC, Akyildiz IF. On Receiver Design for Diffusion-Based Molecular Communication. IEEE Transactions on Signal Processing. 2014;62(22):6032–6044. Available from: https://doi.org/10.1109/TSP.2014.2359644
  3. Kilinc D, Akan OB. Receiver Design for Molecular Communication. IEEE Journal on Selected Areas in Communications. 2013;31(12):705–714. Available from: https://doi.org/10.1109/JSAC.2013.SUP2.1213003
  4. Felicetti L, Femminella M, Reali G. Directional Receivers for Diffusion-Based Molecular Communications. IEEE Access. 2018;7:5769–5783. Available from: https://doi.org/10.1109/ACCESS.2018.2889031
  5. Felicetti L, Femminella M, Reali G. A Molecular Communications System for Live Detection of Hyperviscosity Syndrome. IEEE Transactions on NanoBioscience. 2020;19(3):410–421. Available from: https://doi.org/10.1109/TNB.2020.2984880
  6. Murugesan P, Prabakar S, Porkumaran K, Karthikeyan R. Propagation Model of Molecular Communication Based Targeted Drug Delivery for Atherosclerosis Disease Therapy. In: International Conference on Artificial Intelligence for Smart Community, Lecture Notes in Electrical Engineering . (Vol. 758, pp. 499-516) Springer, Singapore. 2022.
  7. Zhao Q, Li M, Lin L. Release Rate Optimization in Molecular Communication for Local Nanomachine-Based Targeted Drug Delivery. IEEE Transactions on NanoBioscience. 2021;20(4):396–405. Available from: https://doi.org/10.1109/TNB.2021.3056728
  8. Wang Q, Sun Y, Cheng W, Chen Y, Yang K. Novel Interleaved Code for High-Throughput Parallel DNA-Based Molecular Communications. IEEE Communications Letters. 2023;27(10):2593–2597. Available from: https://doi.org/10.1109/LCOMM.2023.3309312
  9. Brand L, Lotter S, Jamali V, Schober R, Schäfer M. Area Rate Efficiency in Multi-Link Molecular Communications. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. 2023;9(4):391–407. Available from: https://doi.org/10.1109/TMBMC.2023.3321193
  10. Selis V, Mcguiness DT, Marshall A. A Novel ML-Based Symbol Detection Pipeline for Molecular Communication. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. 2023;9(2):207–216. Available from: https://doi.org/10.1109/TMBMC.2023.3278532
  11. Hofmann P, Gomez JT, Dressler F, Fitzek FHP. Testbed-based Receiver Optimization for SISO Molecular Communication Channels. In: 2022 International Balkan Conference on Communications and Networking (BalkanCom). Sarajevo, Bosnia and Herzegovina, 22-24 August 2022. IEEE. p. 120–125.
  12. Sajjad T, Eckford AW. Molecular Communication in Vacuum. In: ICC 2022 - IEEE International Conference on Communications. (pp. 3709-3714) IEEE. 2022.
  13. Dhok S, Chouhan L, Noel A, Sharma PK. Cooperative Molecular Communication in Drift-Induced Diffusive Cylindrical Channel. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. 2022;8(1):44–55. Available from: https://doi.org/10.1109/TMBMC.2021.3089939
  14. Chouhan L, Sharma PK. Molecular communication in three-dimensional diffusive channel with mobile nanomachines. Nano Communication Networks. 2020;24:100296. Available from: https://doi.org/10.1016/j.nancom.2020.100296
  15. Awan H, Chou CT. Molecular Communications With Molecular Circuit-Based Transmitters and Receivers. IEEE Transactions on NanoBioscience. 2019;18(2):146–155. Available from: https://doi.org/10.1109/TNB.2019.2892229
  16. Aghababaiyan K, Zefreh RG, Shah‐mansouri V. Enhancing data rate of molecular communication system using Brownian motion. IET Nanobiotechnology. 2019;13(3):293–300. Available from: https://doi.org/10.1049/iet-nbt.2018.5009
  17. Felicetti L, Femminella M, Reali G, Nakano T, Vasilakos AV. TCP-Like Molecular Communications. IEEE Journal on Selected Areas in Communications. 2014;32(12):2354–2367. Available from: https://doi.org/10.1109/JSAC.2014.2367653
  18. Nakano T, Okaie Y, Vasilakos AV. Transmission Rate Control for Molecular Communication among Biological Nanomachines. IEEE Journal on Selected Areas in Communications. 2013;31(12):835–846. Available from: https://doi.org/10.1109/JSAC.2013.SUP2.12130016
  19. Lin L, Luo Z, Huang L, Luo C, Wu Q, Yan H. High-accuracy distance estimation for molecular communication systems via diffusion. Nano Communication Networks. 2019;19:47–53. Available from: https://doi.org/10.1016/j.nancom.2018.11.005
  20. Nakano T, Okaie Y, Hara T. Applications of Molecular Communication Systems. In: Encyclopedia of Wireless Networks . (pp. 1-6) Springer, Cham. 2018.
  21. Bartunik M, Kirchner J, Keszocze O. Artificial intelligence for molecular communication. it-Information Technology. 2023. Available from: http://doi.org/10.1515/itit-2023-0029


© 2024 Katkar & Dongre. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.