• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 45, Pages: 4541-4554

Original Article

Bi-Level algorithm for the segmentation and counting of Leukocytes and Erythrocytes

Received Date:22 April 2020, Accepted Date:19 June 2020, Published Date:19 December 2020


Background/Objectives: To present an accurate quantitative approach based two-phase algorithm to count both the leukocytes and erythrocytes for identifying the severity of leukaemia in the human body. Methods/Statistical analysis: The algorithm is having two-phases with the first phase meant for recognizing and counting the leukocytes using the thresholding based segmentation technique that focuses on the intensity values of pixels of the greyscale blood smear images; whereas the second phase recognizes the erythrocytes by their circular shape using Circular Hough Transform (CHT) method. The system experiments with 26 stained blood smear images from the ALL-IDB1 benchmark dataset. Findings: The first phase of the algorithm achieves 99.41 per cent overall accuracy in leukocytes detection and in the second phase 99.76 per cent overall accuracy is attained in erythrocytes detection. Novelty/Applications: This proposal applies Circular Hough Transform in detecting the erythrocytes by adjusting the radius of the circle according to the magnification rate of the sample image.

Keywords: Circular Hough transform; cell count; image processing; Leukaemia; Leukocytes; Erythrocytes


  1. Elen A, Turan MK. A new approach for fully automated segmentation of peripheral blood smears. International Journal of Advanced and Applied Sciences. 2018;5(1):81–93. Available from: https://doi.org/10.21833/ijaas.2018.01.0
  2. Tai WL, Hu RM, Hsiao HCW, Chen RM, Tsai JJP. Blood cell image classification based on hierarchical SVM. IEEE International Symposium on Multimedia. 2011;p. 129–136. Available from: https://doi.org/10.1109/ISM.2011.29
  3. Vale AMPG, Guerreiro AMG, Neto ADD, Junior GBC, Leitão VCLTdS, Martins AM. Automatic segmentation and classification of blood components in microscopic images using a fuzzy approach. Revista Brasileira de Engenharia Biomédica. 2014;30(4):341–354. Available from: https://dx.doi.org/10.1590/1517-3151.0626
  4. Bhavnani AL, Udesang KJ, Joshi MJ. Segmentation and Counting of WBCs and RBCs from Microscopic Blood Sample Images. International Journal of Image, Graphics and Signal Processing. 2016;8(11):32–40. Available from: https://doi.org/10.5815/ijigsp.2016.11.05
  5. Sai N, AR, Santhoshi KJ, Deep TP. Segmentation of Red Blood Cells. International Journal of Computer Sciences and Engineering. 2018;6(5). Available from: https://www.researchgate.net/publication/325824536_Segmentation_of_Red_Blood_Cells
  6. Bergen T, Steckhan D, Wittenberg T, Zerfass T. Segmentation of leukocytes and erythrocytes in blood smear images. 30th Annual International. Conf Proc IEEE Eng Med Biol Soc. 2008;p. 3075–3078. Available from: https://doi.org/10.1109/IEMBS.2008.4649853
  7. Aparna V, Sarath TV, Ramachandran KI. Simulation model for anemia detection using RBC counting algorithms and Watershed transform. International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). 2017;p. 284–291. Available from: https://doi.org/10.1109%2fICICICT1.2017.8342575
  8. Dorini LB, Minetto R. White blood cell segmentation using morphological operators and scale-space analysis. Proceedings of the XXth Brazilian Symposium on Computer Graphics and Image Processing. 2007;p. 294–304. Available from: https://doi.org/10.1109/sibgrapi.2007.33
  9. Umamaheswari D, Geetha S. A Framework for Efficient Recognition and Classification of Acute Lymphoblastic Leukemia with a Novel Customized-KNN Classifier. Journal of Computing and Information Technology. 2018;26(2):131–140. Available from: https://dx.doi.org/10.20532/cit.2018.1004123
  10. Wu M, Song Z, Li B, Li F, Li B, Chao S. A Method to Detect Circle based on Hough Transform. International Conference on Information Sciences, Machinery, Materials, and Energy (ICISMME-2015). 2015. Available from: https://doi.org/10.2991/icismme-15.2015.415
  11. Maitra M, Gupta RK, Mukherjee M. Detection and Counting of Red Blood Cells in Blood Cell Images using Hough Transform. International Journal of Computer Applications. 2012;53(16):13–17. Available from: https://dx.doi.org/10.5120/8505-2274
  12. Yadav VK, Batham S, Acharya AK, Paul R. Approach to accurate circle detection: Circular Hough Transform and Local Maxima concept. 2014th International Conference on Electronics and Communication Systems (ICECS). 2014;p. 1–5. Available from: https://doi.org/10.1109/ECS.2014.6892577
  13. Ruberto CD, Putzu L. Accurate Blood Cells Segmentation through intuitionistic Fuzzy set Threshold. Tenth International Conference on Signal-Image Technology and Internet-Based Systems. 2015;p. 57–64. Available from: https://doi.org/10.1109/SITIS.2014.43


© 2020 Umamaheswari & Geetha.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.