• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 24, Pages: 1187-1194

Original Article

Bioethical Education and Standardization of Sample Handling Procedures in Raman Spectroscopy Research Studies Involving Human Subjects

Received Date:11 May 2022, Accepted Date:28 May 2022, Published Date:01 July 2022


Novelty: Raman spectroscopy is extensively explored for the disease diagnostics in recent decade. There is limited literature available concerning the standardization of sample handling procedures in Raman spectroscopy research studies involving human subjects. In fact, the present study provided guidance for a harmonize data to conduct Raman spectroscopy research studies involving human subjects for better outcomes based on ethical principles. Objectives: Globally, multi-disciplinary research is conducted for better outcomes in the welfare of humankind. The present study was aimed to provide basic guidance of bioethical education for research students conducting research involving human subjects. Further, the present study was attempted to standardize sample handling procedure in Raman spectroscopy research involving human subjects for better outcomes in disease diagnosis. Materials and methods: We have provided bioethical recommendations based on fundamental ethics codes. The standardization of sample handling procedure was developed using human surgical samples of breast cancer patients. Findings: The researcher should justify the inclusion and exclusion criteria for biological samples to conduct the scientifically valid research study. Research studies involving biological samples shall develop research protocol for the preparation and handling of biological samples. The results of present study suggest that fresh clinically unprocessed tissue samples are superior to conduct research studies involving Raman spectroscopy for disease progression. In case the research is not concerned with positive net benefit for human participants with diagnosis of communicable diseases, the researcher shall exclude these patients from the research study. Informed consent, preferably in writing, has to be obtained from participants in a language in that participant comprehend. Conclusion: The present study described primary bioethical education and standardization techniques for research students to plan and conduct Raman spectroscopy research studies involving human biological materials.

Keywords: Raman spectroscopy; Bioethics; Cancer; Diagnosis; Spectrum


  1. Pandey DK, Kagdada HL, Sanchora P, Singh DK. SD, PM, MA., eds. Modern Techniques of Spectroscopy. Progress in Optical Science and Photonics. (Vol. 13, pp. 145-184) Singapore. Springer. 2021.
  2. Abramczyk H, Imiela A, Brozek-Pluska B, Kopec M. Advances in Raman imaging combined with AFM and fluorescence microscopy are beneficial for oncology and cancer research. Nanomedicine. 2019;14(14):1873–1888. Available from: ttps://doi.org/10.2217/nnm-2018-0335
  3. Githaiga JI, Angeyo HK, Kaduki KA, Bulimo WD, Ojuka DK. Quantitative Raman spectroscopy of breast cancer malignancy utilizing higher-order principal components: A preliminary study. Scientific African. 2021;14:e01035. Available from: https://doi.org/10.1016/j.sciaf.2021.e01035
  4. Eshraghi-Arani M, Dehghani-Bidgoli Z. Raman Spectroscopy-based Breast Cancer Detection Using Self-Constructing Neural Networks. Iranian Journal of Medical Physics. 2021;18:89–95. Available from: https://doi.org/10.22038/ijmp.2020.44367.1678
  5. Shen L, Du Y, Wei N, Li Q, Li S, Sun TM, et al. SERS studies on normal epithelial and cancer cells derived from clinical breast cancer specimens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;237:118364. Available from: https://doi.org/10.1016/j.saa.2020.118364
  6. Nargis HF, Nawaz H, Ditta A, Mahmood T, Majeed MI, Rashid N, et al. Raman spectroscopy of blood plasma samples from breast cancer patients at different stages. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;222:117210. Available from: https://doi.org/10.1016/j.saa.2019.117210
  7. Hernández-Arteaga AC, Zermeño-Nava JDJ, Martínez-Martínez MU, Hernández-Cedillo A, Ojeda-Galván HJ, José-Yacamán M, et al. Determination of Salivary Sialic Acid Through Nanotechnology: A Useful Biomarker for the Screening of Breast Cancer. Archives of Medical Research. 2019;50(3):105–110. Available from: https://doi.org/10.1016/j.arcmed.2019.05.013
  8. Sinica A, Brožáková K, Brůha T, Votruba J. Raman spectroscopic discrimination of normal and cancerous lung tissues. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;219:257–266. Available from: https://doi.org/10.1016/j.saa.2019.04.055
  9. Tunç İ, Susapto HH. Label-Free Detection of Ovarian Cancer Antigen CA125 by Surface Enhanced Raman Scattering. Journal of Nanoscience and Nanotechnology. 2020;20(3):1358–1365. Available from: https://doi.org/10.1166/jnn.2020.17141
  10. Ćulum NM, Cooper TT, Lajoie GA, Dayarathna T, Pasternak SH, Liu J, et al. Characterization of ovarian cancer-derived extracellular vesicles by surface-enhanced Raman spectroscopy. The Analyst. 2021;146(23):7194–7206. Available from: https://doi.org/10.1039/D1AN01586A
  11. Ramos IRM, Malkin A, Lyng FM. Current Advances in the Application of Raman Spectroscopy for Molecular Diagnosis of Cervical Cancer. BioMed Research International. 2015;2015:1–9. Available from: https://doi.org/10.1155/2015/561242
  12. Zhang H, Chen C, Gao R, Yan Z, Zhu Z, Yang B, et al. Rapid identification of cervical adenocarcinoma and cervical squamous cell carcinoma tissue based on Raman spectroscopy combined with multiple machine learning algorithms. Photodiagnosis and Photodynamic Therapy. 2021;33:102104. Available from: https://doi.org/10.1016/j.pdpdt.2020.102104
  13. Zheng C, Qing S, Wang J, Lü G, Li H, Lü X, et al. Diagnosis of cervical squamous cell carcinoma and cervical adenocarcinoma based on Raman spectroscopy and support vector machine. Photodiagnosis and Photodynamic Therapy. 2019;27:156–161. Available from: https://doi.org/10.1016/j.pdpdt.2019.05.029
  14. Falamas A, Rotaru H, Hedeșiu M. Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis. Lasers in Medical Science. 2020;35:1393–1401. Available from: https://doi.org/10.1007/s10103-020-02988-2
  15. Li Y, Su S, Zhang Y, Liu S, Jin H, Zeng Q, et al. Accuracy of Raman spectroscopy in discrimination of nasopharyngeal carcinoma from normal samples: a systematic review and meta-analysis. Journal of Cancer Research and Clinical Oncology. 2019;145(7):1811–1821. Available from: https://doi.org/10.1007/s00432-019-02934-y
  16. Abramczyk H, Imiela A, Surmacki J. Novel strategies of Raman imaging for monitoring intracellular retinoid metabolism in cancer cells. Journal of Molecular Liquids. 2021;334:116033. Available from: https://doi.org/10.1016/j.molliq.2021.116033
  17. Depciuch J, Tołpa B, Witek P, Szmuc K, Kaznowska E, Osuchowski M, et al. Raman and FTIR spectroscopy in determining the chemical changes in healthy brain tissues and glioblastoma tumor tissues. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;225:117526. Available from: https://doi.org/10.1016/j.saa.2019.117526
  18. Lemoine É, Dallaire F, Yadav R, Agarwal R, Kadoury S, Trudel D, et al. Feature engineering applied to intraoperative<i>in vivo</i>Raman spectroscopy sheds light on molecular processes in brain cancer: a retrospective study of 65 patients. The Analyst. 2019;144(22):6517–6532. Available from: https://doi.org/10.1039/c9an01144g
  19. Avram L, Iancu SD, Stefancu A, Moisoiu V, Colnita A, Marconi D, et al. SERS-Based Liquid Biopsy of Gastrointestinal Tumors Using a Portable Raman Device Operating in a Clinical Environment. Journal of Clinical Medicine. 2020;9(1):212. Available from: https://doi.org/10.3390/jcm9010212
  20. Bahreini M, Hosseinzadegan A, Rashidi A, Miri SR, Mirzaei HR, Hajian P. A Raman-based serum constituents’ analysis for gastric cancer diagnosis: In vitro study. Talanta. 2019;204:826–832. Available from: https://doi.org/10.1016/j.talanta.2019.06.068
  21. D’acunto M, Gaeta R, Capanna R, Franchi A. Contribution of Raman Spectroscopy to Diagnosis and Grading of Chondrogenic Tumors. Scientific Reports. 2020;10(1):2155. Available from: https://doi.org/10.1038/s41598-020-58848-0
  22. Qian H, Shao X, Zhu Y, Fan L, Zhang H, Dong B, et al. Surface-enhanced Raman spectroscopy of preoperative serum samples predicts Gleason grade group upgrade in biopsy Gleason grade group 1 prostate cancer. Urologic Oncology: Seminars and Original Investigations. 2020;38(6):601.e1–601.e9. Available from: https://doi.org/10.1016/j.urolonc.2020.02.009
  23. Brozek-Pluska B, Miazek K, Musiał J, Kordek R. Label-free diagnostics and cancer surgery Raman spectra guidance for the human colon at different excitation wavelengths. RSC Advances. 2019;9(69):40445–40454. Available from: https://doi.org/10.1039/c9ra06831g
  24. Sato S, Sekine R, Kagoshima H, Kazama K, Kato A, Shiozawa M, et al. All-in-one Raman spectroscopy approach to diagnosis of colorectal cancer: analysis of spectra in the fingerprint regions. Journal of the Anus, Rectum and Colon. 2019;3(2):84–90. Available from: https://doi.org/10.23922/jarc.2018-039
  25. Zhao J, Zeng H, Kalia S, Lui H. Using Raman Spectroscopy to Detect and Diagnose Skin Cancer In Vivo. Dermatologic Clinics. 2017;35(4):495–504. Available from: https://doi.org/10.1016/j.saa.2021.120571
  26. Chen X, Li X, Yang H, Xie J, Liu A. Diagnosis and staging of diffuse large B-cell lymphoma using label-free surface-enhanced Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022;267:120571. Available from: https://doi.org/10.1016/j.saa.2021.120571
  27. Wang L, Liu W, Tang JWW, Wang JJ, Liu QH, Wen PBB, et al. Applications of Raman Spectroscopy in Bacterial Infections: Principles, Advantages, and Shortcomings. Frontiers in Microbiology. 1906;12. Available from: https://doi.org/10.3389/fmicb.2021.683580
  28. Bird B, Bedrossian K, Laver N, Miljković M, Romeo MJ, Diem M. Detection of breast micro-metastases in axillary lymph nodes by infrared micro-spectral imaging. The Analyst. 2009;134(6):1067. Available from: https://doi.org/10.1039/b821166c
  29. Depciuch J, Kaznowska E, Szmuc K, Zawlik I, Cholewa M, Heraud P, et al. Comparing paraffined and deparaffinized breast cancer tissue samples and an analysis of Raman spectroscopy and infrared methods. Infrared Physics & Technology. 2016;76:217–226. Available from: https://doi.org/10.1016/j.infrared.2016.02.006


© 2022 Jain et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.