• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 45, Pages: 2451-2457

Original Article

Biological Monitoring of Urinary Fluoride Among Phosphate Fertiliser Production Industrial Workers

Received Date:03 August 2022, Accepted Date:10 October 2022, Published Date:03 December 2022

Abstract

Objectives: Fluoride pollution at the workplace environment arises mostly due to anthropogenic activities. The workers working in phosphate fertilizer industry might have chronic exposure to excessive fluoride which can cause adverse health effects. Therefore, the present study was designed to assess urinary fluoride levels in occupationally exposed workers. Methods: In this study, pre and post-shift urinary samples were collected from phosphate fertilizer industry male workers (n=53). Fluoride levels in urine samples were analysed using an Ion Selective Electrode (ISE). Findings: The mean concentration of pre-shift and post-shift urinary fluoride levels were 2.141.35 and 2.422.02 mg/g of urinary creatinine respectively. Workers’ pre-shift mean urine fluoride levels were categorised according to their working departments. Workers from the manufacture plat of Single Super Phosphate (SSP), Granular Single Super Phosphate (GSSP), maintenance, and administration had fluoride levels of 2.871.88, 2.431.01, 2.161.30, and 0.920.601 mg/g of urine creatinine, respectively. Similarly, the post-shift urinary fluoride levels were 3.683.00, 2.641.85, 2.241.78 and 1.140.53 mg/g of urinary creatinine in these departments respectively. One-way analysis of variance shown significant difference in urine fluoride concentrations between pre-shift (ANOVA, df=3, F=4.717; p=0.006) and post-shift samples (ANOVA, df=3, F=2.895; p=0.044). About 22.64 % of subjects in the pre-shift and 3.77% of subjects in the post-shift had exceeded the urinary fluoride limits prescribed by various statutory agencies. Novelty: Based on pre-shift and post-shift work exposure assessments, this study adds new knowledge to scientific research on the fluoride exposure among phosphate fertiliser sector workers. While there is sporadic information on fluoride levels among various other occupational groups, very few reports reported the fluoride levels in fertilizer industryworkers. Outcomes of this study will help to identify the source of fluoride and extent of fluoride exposure so as to suggest the mitigation measure to control fluoride exposure at occupational settings. Keywords: Biological monitoring; Fluoride exposure; Urinary fluoride; Occupational fluoride exposure; Fertilizer industry workers

References

  1. Ramteke LP, Sahayam AC, Ghosh A, Rambabu U, Reddy MRP, Popat KM, et al. Study of fluoride content in some commercial phosphate fertilizers. Journal of Fluorine Chemistry. 2018;210:149–155. Available from: https://doi.org/10.1016/j.jfluchem.2018.03.018
  2. Wang M, Li X, He WY, Li JX, Zhu YY, Liao YL, et al. Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China. Environmental Pollution. 2019;249:423–433. Available from: http://dx.doi.org/10.1016/j.envpol.2019.03.044
  3. Mikkonen HG, Graaff RVD, Mikkonen AT, Clarke BO, Dasika R, Wallis CJ, et al. Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil. Environmental Pollution. 2018;242:1838–1849. Available from: https://doi.org/10.1016/j.envpol.2018.07.083
  4. Randive K, Raut T, Jawadand S. An overview of the global fertilizer trends and India’s position in 2020. Mineral Economics. 2021;34(3):371–384. Available from: https://doi.org/10.1007/s13563-020-00246-z
  5. Chakraborty K. Determinants of Demand for Fertilizer: A Case for India. Asian Journal of Agriculture and Development. 2016;13(1):77–86. Available from: http://dx.doi.org/10.22004/ag.econ.258978
  6. Idowu OS, Duckworth RM, Valentine RA, Zohoori FV. Biomarkers for the Assessment of Fluoride Exposure in Children. Caries Research. 2020;54(2):134–143. Available from: https://doi.org/10.1159/000504166
  7. Sah O, Maguire A, Zohoori FV. Effect of altitude on urinary, plasma and nail fluoride levels in children and adults in Nepal. Journal of Trace Elements in Medicine and Biology. 2020;57:1–8. Available from: https://doi.org/10.1016/j.jtemb.2019.09.003
  8. Jiménez-Córdova MI, Cárdenas-González M, Aguilar-Madrid G, Sanchez-Peña LC, Barrera-Hernández Á, Domínguez-Guerrero IA, et al. Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels. Toxicology and Applied Pharmacology. 2018;352:97–106. Available from: https://doi.org/10.1016/j.taap.2018.05.027
  9. Sayanthooran S, Gunerathne L, Abeysekera TDJ, Magana-Arachchi DN. Transcriptome analysis supports viral infection and fluoride toxicity as contributors to chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. International Urology and Nephrology. 2018;50(9):1667–1677. Available from: https://doi.org/10.1007/s11255-018-1892-z
  10. Malin AJ, Lesseur C, Busgang SA, Curtin P, Wright RO, Sanders AP. Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013–2016. Environment International. 2019;132:105012. Available from: https://doi.org/10.1016%2Fj.envint.2019.105012
  11. Seixas NS, Cohen M, Zevenbergen B, Cotey M, Carter S, Kaufman J. Urinary Fluoride as an Exposure Index in Aluminum Smelting. American Industrial Hygiene Association Journal. 2000;61(1):89–94. Available from: http://dx.doi.org/10.1080/15298660008984520
  12. Schwarz M, Salva J, Vanek M, Rasulov O, Darmová I. Fluoride Exposure and the Effect of Tobacco Smoking on Urinary Fluoride Levels in Primary Aluminum Workers. Applied Sciences. 2021;11(1):156. Available from: https://dx.doi.org/ 10.3390/app11010156
  13. Susheela AK, Mondal NK, Singh A. Exposure to fluoride in smelter workers in a primary aluminum industry in India. The International Journal of Occupational and Environmental Medicine. 2013;4(2):61–72. Available from: https://neuro.unboundmedicine.com/medline/citation/23567531/Exposure_to_fluoride_in_smelter_workers_in_a_primary_aluminum_industry_in_India_
  14. Saha A, Mukherjee AK, Ravichandran B. Musculoskeletal problems and fluoride exposure: A cross-sectional study among metal smelting workers. Toxicology and Industrial Health. 2015;32(9):1581–1588. Available from: https://doi.org/10.1177/0748233714568477
  15. Mandinic Z, Curcic M, Antonijevic B, Lekic CP, Carevic M. Relationship between fluoride intake in Serbian children living in two areas with different natural levels of fluorides and occurrence of dental fluorosis. Food and Chemical Toxicology. 2009;47(6):1080–1084. Available from: https://doi.org/10.1016/j.fct.2009.01.038.
  16. Koç E, Karademir B, Soomro N, Uzun F. The Effects, both separate and interactive, of smoking and tea consumption on urinary fluoride levels. Fluoride. 2018;51(1):84–96.
  17. Limeback H., ed. Comprehensive Preventive Dentistry. John Wiley & Sons. 2012.
  18. Zheng Y, Wu J, Ng JC, Wang G, Lian W. The absorption and excretion of fluoride and arsenic in humans. Toxicology letters. 2002;133(1):82–88. Available from: https://doi.org/10.1016/S0378-4274(02)00082-6

Copyright

© 2022 Jawahar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.