• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 22, Pages: 1100-1111

Original Article

BWENet: Detection and Grading of Bacterial Wilt Using Deep Convolutional Neural Network

Received Date:19 March 2022, Accepted Date:05 May 2022, Published Date:22 June 2022


Objectives: To design a Bacterial Wilt Enset (BWENet) model that can detect and grade the level of bacterial wilt disease in Enset using a deep convolutional neural network. Methods: Convolutional neural network is used for detection of bacterial wilt and 4-way Softmax is used for grading bacterial wilt into a specific level (normal, early-stage, infected stage, and completely wilted Enset). About 1600 images were used to evaluate the performance of the model out of which 70% is for training, 15% for validation and 15% for testing. We collected dataset from kefa, Sheka agricultural research center and some selected areas in SNNPR. The proposed model was trained using these images and data augmentation techniques were applied to generate more images. Findings: BWENet model achieved an identification test grading accuracy of 90.53% bacterial wilt disease. BWENet model is found to be faster to train and has a smaller model size as compared to State-of-the-art models like Alex Net, Google net, and VGG19. Novelty: we are proposing a new CNN architecture to grade bacterial wilt disease severity measurement. By our experiments, we have shown the kernel size selection, poling layer selection, and segmentation achieved better accuracy results.

Keywords: Deep learning; Feature Learning; Segmentation; Grading; Concatenation


  1. Ganore KA, Tigistu G. Ethiopian Enset Diseases Diagnosis Model Using Image Processing and Machine Learning Techniques. International Journal of Intelligent Information Systems. 2020;9(1):1–5. doi: 10.11648/j.ijiis.20200901.11
  2. Aytenfsu M, Haile B. Distribution and Management of Bacterial Wilt ( Xanthomonas Campestris pv . Musacearum ) of Enset ( Ensete Ventricosum ) in Ethiopia : a Review. International Journal of Research in Agriculture and Forestry. 2020;7(2):40–53. Available from: https://www.ijraf.org/papers/v7-i2/5.pdf
  3. Afework YK, Debelee TG. Detection of Bacterial Wilt on Enset Crop Using Deep Learning Approach. International Journal of Engineering Research in Africa. 2020;51:131–146. Available from: http://dx.doi.org/10.4028/www.scientific.net/JERA.51.131
  4. Yigezu MG, Woldeyohannis MM, Tonja AL. Early Ginger Disease Detection Using Deep Learning Approach. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. 2022;411:480–488. doi: 10.1007/978-3-030-93709-6_32
  5. Merga IF, Tripathi L, Hvoslef-Eide AK, Gebre E. Application of Genetic Engineering for Control of Bacterial Wilt Disease of Enset, Ethiopia’s Sustainability Crop. Frontiers in Plant Science. 2019;10. doi: 10.3389/fpls.2019.00133
  6. Deng R, Tao M, Xing H, Yang X, Liu C, Liao K, et al. Automatic Diagnosis of Rice Diseases Using Deep Learning. Frontiers in Plant Science. 2021;12. Available from: https://doi.org/10.3389/fpls.2021.701038
  7. Rao DS. Plant disease classification using deep bilinear cnn. Intelligent Automation & Soft Computing. 2022;31(1):161–176. Available from: https://www.techscience.com/iasc/v31n1/44287
  8. Orbien C. Identification of Carabao Mango Leaf Disease using Convolutional Neural Network. Journal of Advanced Research in Dynamical and Control Systems. 2020;12(01-Special Issue):152–158.
  9. Subramanian KS, Vairachilai S, Gebremichael T. Features extraction and dataset preparation for grading of ethiopian coffee beans using image analysis techniques. Information and Communication Technology for Intelligent Systems. Information and Communication Technology for Intelligent Systems. 2019;106:287–298. doi: 10.1007/978-981-13-1742-2_28
  10. Yerima SY, Alzaylaee MK. Mobile Botnet Detection: A Deep Learning Approach Using Convolutional Neural Networks. Int. Conf. Cyber Situational Awareness, Data Anal. Assessment, Cyber SA. 2020;2020:15–19. Available from: https://doi.org/10.48550/arXiv.2007.00263
  11. Alkahtani H, Aldhyani THH. Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications. Security and Communication Networks. 2021;2021:1–23. Available from: https://doi.org/10.1155/2021/3806459
  12. Bhujel A, Kim NEE, Arulmozhi E, Basak JK, Kim HTE. A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification. Agriculture. 2022;12(2):228. Available from: https://doi.org/10.3390/agriculture12020228
  13. Ramos KSH, Monge MAS, Vidal JM. Benchmark-based reference model for evaluating botnet detection tools driven by traffic-flow analytics. Sensors (Switzerland). 2020;20(16):1–31. Available from: https://doi.org/10.3390/s20164501
  14. Aszemi NM, Dominic PDD. Hyperparameter Optimization in Convolutional Neural Network using Genetic Algorithms. International Journal of Advanced Computer Science and Applications. 2019;10(6):269–278. Available from: http://dx.doi.org/10.14569/IJACSA.2019.0100638
  15. Indolia S, Goswami AK, Mishra SP, Asopa P. Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Computer Science. 2018;132:679–688. Available from: https://doi.org/10.1016/j.procs.2018.05.069


© 2022 Ashebir & Tadesse. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.