• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 16, Pages: 700-711

Original Article

Homotopy Analysis Method for an Influence of Dufour-Soret and Melting Process on Magnetohydrodynamic Boundary-Layer Flow towards a Wedge in an Eyring Powell Fluid

Received Date:15 December 2021, Accepted Date:23 February 2022, Published Date:26 April 2022

Abstract

Objectives: The present study investigates the chemical reaction of first-order and Dufour-Soret impact on the magnetohydrodynamic flow of boundarylayer non-Newtonian Eyring Powell fluid across a wedge by taking into account the radiation and melting process. The motion of the fluid is presumed to be incompressible and laminar. Significantly, the presence of the melting process and Dufour-Soret influence the characteristics of mass and heat transfer of the fluid flow. Methods: The governing equations are constructed and modified into non-linear, coupled ODEs by utilizing similarity variables and then solved by Homotopy Analysis Method (HAM) based BVPh 2.0 Mathematica package. Findings: The velocity, thermal, and concentration profiles are illustrated through graphs and Nusselt number, Sherwood number, and skinfriction coefficient values are shown via tables for varying values of emerging parameters. Results disclosed that the velocity decays with increasing values of fluid parameters (d ;a). It was observed that larger values of Soret parameters (Sr) and Dufour parameter (Dr) increased the concentration and thermal, respectively. It is scrutinized that the velocity suppresses due to extending values of melting parameter (c). Novelty: An incorporation of Soret -Dufour and melting process impact in a non-Newtonian fluid flow across wedge under a magnetic field is novel in the model.

Keywords: Dufour Soret; Eyring Powell fluid; Magnetohydrodynamic; Melting process; Thermal radiation; Wedge

References

  1. Hsu CH, Tsai TH, Chang CC, Huang WH. A boundary layer flow analysis of a magnetohydrodynamic fluid over a shrinking sheet. Advances in Mechanical Engineering. 2019;11(3):168781401983506. Available from: https://dx.doi.org/10.1177/1687814019835069
  2. Ullah H, Khan I, Fiza M, Nawaf N, Hamadneh, Fayz-Al-Asad M, et al. MHD boundary layer flow over a stretching sheet: A New Stochastic Method. Mathematical Problems in Engineering Volume. 2021;p. 1–26. Available from: https://doi.org/10.1155/2021/9924593
  3. Berrehal H. Thermodynamics second law analysis for MHD boundary layer flow and heat transfer caused by a moving wedge. Journal of Mechanical Science and Technology. 2019;33(6):2949–2955. Available from: https://dx.doi.org/10.1007/s12206-019-0542-4
  4. Mahabaleshwar US, Nagaraju KR, Sheremet MA, Kumar PNV, Lorenzini G. Effect of Mass Transfer and MHD Induced Navier’s Slip Flow Due to a non Linear Stretching Sheet. Journal of Engineering Thermophysics. 2019;28(4):578–590. Available from: https://dx.doi.org/10.1134/s1810232819040131
  5. Kumar KA, Sugunamma V, Sandeep N. Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model. Journal of Thermal Analysis and Calorimetry. 2020;139(6):3661–3674. Available from: https://dx.doi.org/10.1007/s10973-019-08694-8
  6. Vafai K, Khan AA, Fatima G, Sait SM, Ellahi R. Dufour, Soret and radiation effects with magnetic dipole on Powell-Eyring fluid flow over a stretching sheet. International Journal of Numerical Methods for Heat & Fluid Flow. 2021;31(4):1085–1103. Available from: https://dx.doi.org/10.1108/hff-06-2020-0328
  7. Shamshuddin MD, Chamkha AJ, Thumma T, Raju MC. Computation of unsteady MHD mixed convective heat and mass transfer in dissipative reactive micropolar flow considering Soret and Dufour effects. Frontiers in Heat and Mass Transfer. 2018;10:1–15. Available from: https://dx.doi.org/10.5098/hmt.10.15
  8. Humane PP, Patil VS, Patil AB. Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of Casson–Williamson nanofluid over a porous stretching surface. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2021;235(6):2008–2018. Available from: https://dx.doi.org/10.1177/09544089211025376
  9. Mahabaleshwar US, Anusha T, Sakanaka PH, Bhattacharyya S. Impact of Inclined Lorentz Force and Schmidt Number on Chemically Reactive Newtonian Fluid Flow on a Stretchable Surface When Stefan Blowing and Thermal Radiation are Significant. Arabian Journal for Science and Engineering. 2021;46(12):12427–12443. Available from: https://dx.doi.org/10.1007/s13369-021-05976-y
  10. Kumar KA, Sugunamma V, Sandeep N. Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet. Journal of Thermal Analysis and Calorimetry. 2020;140(5):2377–2385. Available from: https://dx.doi.org/10.1007/s10973-019-08977-0
  11. Hussain M, Ali A, Ghaffar A, Inc M. Flow and thermal study of MHD Casson fluid past a moving stretching porous wedge. Journal of Thermal Analysis and Calorimetry. 2021. Available from: https://dx.doi.org/10.1007/s10973-021-10983-0
  12. Kumar KA, Ramadevi B, Sugunamma V, Reddy JVR. Heat transfer characteristics on MHD Powell-Eyring fluid flow across a shrinking wedge with non-uniform heat source/sink. Journal of Mechanical Engineering and Sciences. 2019;13(1):4558–4574. Available from: https://dx.doi.org/10.15282/jmes.13.1.2019.15.0385

Copyright

© 2022 Umadevi & Mallikarjun. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.