• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 4, Pages: 333-342

Original Article

Characterization and Image Processing Analysis on Polypropylene Fiber Reinforced Foamed Concrete

Received Date:10 November 2023, Accepted Date:30 December 2023, Published Date:20 January 2024


Objectives: The research explores the effect of adding polypropylene fiber in foamed concrete. Methods/Analysis: The manuscript discusses the mechanical and durability properties of polypropylene fiber reinforced foamed concrete. Fly ash, copper slag, and polypropylene fiber were admixed for strengthening the foamed concrete. The experimental analysis is carried out with polypropylene fibers at 0%, 0.25%, 0.5% and 0.75% by volume of concrete. Image processing analysis through MATLAB was done to validate the mechanical and durability properties. Findings: The results showed that, the optimum quantity of fiber reinforcement is found to be 0.25%. There was an increase in compressive, split tensile strength and flexural strength of 13.6%, 16.7%, and 30%, respectively, with 0.25% fiber. The durability test results suggest that these values are acceptable for constructing durable concrete structures limited to non-structural applications. The results were validated using image processing analysis through MATLAB software. Economic analysis showed that the foamed concrete reduces the structural dead load by almost 35.3%. Novelty/Improvement: It is recommended that the polypropylene fiber reinforced foamed concrete would be feasible for durable concrete structures limited to non-structural applications.

Keywords: Foamed concrete, Polypropylene fiber, Shrinkage, Image processing, Structural viability


  1. Divyah N, Thenmozhi R, Neelamegam M, Prakash R. Characterization and behavior of basalt fiber‐reinforced lightweight concrete. Structural Concrete. 2021;22(1):422–430. Available from: https://doi.org/10.1002/suco.201900390
  2. Gencel O, Bilir T, Bademler Z, Ozbakkaloglu T. A Detailed Review on Foam Concrete Composites: Ingredients, Properties, and Microstructure. Applied Sciences. 2022;12(11):1–30. Available from: https://doi.org/10.3390/app12115752
  3. Prakash R, Thenmozhi R, Raman SN, Subramanian C, Divyah N. An investigation of key mechanical and durability properties of coconut shell concrete with partial replacement of fly ash. Structural Concrete. 2021;22(S1):E985–E996. Available from: https://doi.org/10.1002/suco.201900162
  4. Selvakumar M, Srimathi C, Narayanan S, Mukesh B. Study on properties of foam concrete with foundry sand and latex. Materials Today: Proceedings. 2023;80(Part 2):1055–1060. Available from: https://doi.org/10.1016/j.matpr.2022.11.462
  5. Yang D, Liu M, Zhang Z, Yao P, Ma Z. Properties and modification of sustainable foam concrete including eco-friendly recycled powder from concrete waste. Case Studies in Construction Materials. 2022;16:1–18. Available from: https://doi.org/10.1016/j.cscm.2021.e00826
  6. Prakash R, Raman SN, Divyah N, Subramanian C, Vijayaprabha C, Praveenkumar S. Fresh and mechanical characteristics of roselle fibre reinforced self-compacting concrete incorporating fly ash and metakaolin. Construction and Building Materials. 2021;290:123209. Available from: https://doi.org/10.1016/j.conbuildmat.2021.123209
  7. Michelini E, Ferretti D, Miccoli L, Parisi F. Autoclaved aerated concrete masonry for energy efficient buildings: State of the art and future developments. Construction and Building Materials. 2023;402:1–16. Available from: https://doi.org/10.1016/j.conbuildmat.2023.132996
  8. Han S, Zhang P, Zhang H, Kang D, Wang X. Physical and mechanical properties of foamed concrete with recycled concrete aggregates. Frontiers in Materials. 2023;10:1–14. Available from: https://doi.org/10.3389/fmats.2023.1106243
  9. Gökçe HS, Öksüzer N, Kamiloğlu HA, Eyüboğlu M, Yılmaz F. The Toughness of Polypropylene Fiber-Reinforced Foam Concrete under Various Uni- and Tri-Axial Compression Loads. KSCE Journal of Civil Engineering. 2023;27(7):2982–2992. Available from: https://doi.org/10.1007/s12205-023-1345-9
  10. Mydin MAO, Nawi MNM, Omar R, Dulaimi A, Najm HM, Mahmood S, et al. Mechanical, durability and thermal properties of foamed concrete reinforced with synthetic twisted bundle macro-fibers. Frontiers in Materials. 2023;10:1–13. Available from: https://doi.org/10.3389/fmats.2023.1158675
  11. Falliano D, Parmigiani S, Suarez-Riera D, Ferro GA, Restuccia L. Stability, flexural behavior and compressive strength of ultra-lightweight fiber-reinforced foamed concrete with dry density lower than 100 kg/m3. Journal of Building Engineering. 2022;51:104329. Available from: https://doi.org/10.1016/j.jobe.2022.104329
  12. Tran MV, Cu YTH, Le CVH. Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing. Journal of Building Engineering. 2021;44:103400. Available from: https://doi.org/10.1016/j.jobe.2021.103400
  13. Amran M, Fediuk R, Vatin N, Lee YH, Murali G, Ozbakkaloglu T, et al. Fibre-Reinforced Foamed Concretes: A Review. Materials. 2020;13(19):1–36. Available from: https://doi.org/10.3390/ma13194323
  14. Chen L, Li P, Guo W, Wang R, Zhang D, Gao M, et al. Experimental Investigation of the Dynamic Mechanical Properties of Polypropylene-Fiber-Reinforced Foamed Concrete at High Temperatures. Polymers. 2023;15(11):1–26. Available from: https://doi.org/10.3390/polym15112544
  15. Castillo-Lara JF, Flores-Johnson EA, Valadez-Gonzalez A, Herrera-Franco PJ, Carrillo JG, Gonzalez-Chi PI, et al. Mechanical Properties of Natural Fiber Reinforced Foamed Concrete. Materials. 2020;13(14):3060. Available from: https://doi.org/10.3390/ma13143060
  16. 318-05: Building Code Requirements for Structural Concrete and Commentary. Farmington Hills, MI, USA. American Concrete Institute. 2005.
  17. lbrahim MHW, Jamaludin N, Irwan JM, Ramadhansyah PJ, Hani AS. Compressive and flexural strength of foamed concrete containing polyolefin fibers. Advanced Materials Research. 2014;911:489–493. Available from: https://core.ac.uk/download/pdf/20558288.pdf
  18. Olumoyewa DA, Samson OO, Sefiu AB, Cephas OO. Splitting Tensile Strength Assessment of Lightweight Foamed Concrete Reinforced with Waste Tyre Steel Fibres. International Journal of Civil Engineering and Technology. 2018;9(9):1129–1137. Available from: https://iaeme.com/Home/article_id/IJCIET_09_09_109
  19. Akindahunsi AA, Uzoegbo HC. Strength and Durability Properties of Concrete with Starch Admixture. International Journal of Concrete Structures and Materials. 2015;9(3):323–335. Available from: https://doi.org/10.1007/s40069-015-0103-x
  20. Shahidan S, Aminuddin E, Noor KM, Hannan NIRR, Bahari NAS. Potential of Hollow Glass Microsphere as Cement Replacement for Lightweight Foam Concrete on Thermal Insulation Performance. MATEC Web of Conferences. 2017;103:1–9. Available from: https://doi.org/10.1051/matecconf/201710301014
  21. Prakash R, Thenmozhi R, Raman SN, Subramanian C, Divyah N. Mechanical characterisation of sustainable fibre-reinforced lightweight concrete incorporating waste coconut shell as coarse aggregate and sisal fibre. International Journal of Environmental Science and Technology. 2021;18(6):1579–1590. Available from: https://doi.org/10.1007/s13762-020-02900-z
  22. Tian F, Zhao Y, Che X, Zhao Y, Xin D. Concrete Crack Identification and image mosaic based on image processing. Applied Sciences. 2019;9(22):1–19. Available from: https://doi.org/10.3390/app9224826


© 2024 Prakash et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.