• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 17, Pages: 1703-1713

Original Article

Coronary artery disease prediction using hidden Markov model based support vector machine

Received Date:27 March 2020, Accepted Date:08 May 2020, Published Date:10 June 2020


Background: Medical data classification has become a hot research domain in data mining, but still it faces the increased classification accuracy issues. Methods/Statistical Analysis: Novel Hidden Markov Model based Support Vector Machine (HMM-SVM) is proposed to classify and predict Coronary Artery Disease (CAD). The features are extracted using HMM, and normalized using SVM. Feature Extraction assist the classification algorithm to get better results. HMM-SVM performs classification by extracting the features of Z-AlizadehSani dataset and finally selects the appropriate feature to perform classification. Findings: Z-AlizadehSani dataset holds 303 records with 4 different types of features, which are demographic, symptom and examination, ECG, and laboratory cum echo. For extracting these features and finding hidden information there exists no common algorithm. In HMM-SVM, HMM is applied to extract features by finding the hidden and previous stage values, and SVM is applied to perform classification on extracted features. To analyze the performance of HMM-SVM benchmark performance metrics are utilized. Discriminative performance results of internal validations are high in the task of binary classification (i.e., sensitivity- 98.2%; specificity-97.96%). False Positive Rate of HMM-SVM is entirely low (i.e.,1.87%) when comparing with previous algorithms. HMMSVM holds the classification accuracy as 98.02% and which is the better cum expected results towards the prediction of CAD. Novelty: Detailed analysis indicates HMM-SVM have better effects towards classifying and predicting CAD. Furthermore, care needs to be placed in adhering to ethical principles while utilizing the models that are automated. Future studies should make use of bio-inspired concepts to get even better results.

Keywords: CAD; Classification; SVM; HMM; Markov


  1. Alizadehsani R, Habibi J, Hosseini MJ, Mashayekhi H, Boghrati R, Ghandeharioun A, et al. A data mining approach for diagnosis of coronary artery disease. Computer Methods and Programs in Biomedicine. 2013;111(1):52–61. doi: 10.1016/j.cmpb.2013.03.004
  2. Omprakash S, Ravichandran M. Prediction of Coronary Artery Disease Using Core Principal Component Analysis Based Support Vector Machine. International Journal of Scientific & Technology Research. 2019;8:791–798.
  3. Omprakash S, Ravichandran M. Ant Colony Optimization Based Support Vector Machine Towards Predicting Coronary Artery Disease. International Journal of Recent Technology and Engineering. 2019;7:210–215. Available from: https://www.ijrte.org/wp-content/uploads/papers/v7i5/E2044017519.pdf
  4. Gupta D, Sundaram S, Khanna A, Hassanien AE, Albuquerque VHCd. Improved diagnosis of Parkinson's disease using optimized crow search algorithm. Computers & Electrical Engineering. 2018;68:412–424. doi: 10.1016/j.compeleceng.2018.04.014
  5. Samanta P, Pathak A, Mandana K, Saha G. Classification of coronary artery diseased and normal subjects using multi-channel phonocardiogram signal. Biocybernetics and Biomedical Engineering. 2019;39(2):426–443. doi: 10.1016/j.bbe.2019.02.003
  6. Malik SI, Akram MU, Siddiqi I. Localization and classification of heartbeats using robust adaptive algorithm. Biomedical Signal Processing and Control. 2019;49:57–77. doi: 10.1016/j.bspc.2018.11.003
  7. Isler Y, Narin A, Ozer M, Perc M. Multi-stage classification of congestive heart failure based on short-term heart rate variability. Chaos, Solitons & Fractals. 2019;118:145–151. doi: 10.1016/j.chaos.2018.11.020
  8. Mondéjar-Guerra V, Novo J, Rouco J, Penedo MG, Ortega M. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomedical Signal Processing and Control. 2019;47:41–48. doi: 10.1016/j.bspc.2018.08.007
  9. Hu L, Yin C, Ma S, Liu Z. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;205:574–581. doi: 10.1016/j.saa.2018.07.054
  10. Sannino G, Pietro GD. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Generation Computer Systems. 2018;86:446–455. doi: 10.1016/j.future.2018.03.057
  11. Potharaju SP, Sreedevi M, Ande VK, Tirandasu RK. Data mining approach for accelerating the classification accuracy of cardiotocography. Clinical Epidemiology and Global Health. 2019;7(2):160–164. doi: 10.1016/j.cegh.2018.03.004
  12. Arabasadi Z, Alizadehsani R, Roshanzamir M, Moosaei H, Yarifard AA. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Computer Methods and Programs in Biomedicine. 2017;141:19–26. doi: 10.1016/j.cmpb.2017.01.004
  13. Thiyagaraja SR, Dantu R, Shrestha PL, Chitnis A, Thompson MA, Anumandla PT, et al. A novel heart-mobile interface for detection and classification of heart sounds. Biomedical Signal Processing and Control. 2018;45:313–324. doi: 10.1016/j.bspc.2018.05.008
  14. Ata SK, Fang Y, Wu M, Li X, Xiao X. Disease gene classification with metagraph representations. Methods. 2017;131:83–92. doi: 10.1016/j.ymeth.2017.06.036
  15. Sellami A, Hwang H. A robust deep convolutional neural network with batch-weighted loss for heartbeat classification. Expert Systems with Applications. 2019;122:75–84. doi: 10.1016/j.eswa.2018.12.037
  16. Chabchoub S, Mansouri S, Salah RB. Detection of valvular heart diseases using impedance cardiography ICG. Biocybernetics and Biomedical Engineering. 2018;38(2):251–261. doi: 10.1016/j.bbe.2017.12.002
  17. Shi H, Wang H, Huang Y, Zhao L, Qin C, Liu C. A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Computer Methods and Programs in Biomedicine. 2019;171(10). doi: 10.1016/j.cmpb.2019.02.005


© 2020 Omprakash, Ravichandran. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.