• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 29, Pages: 2439-2447

Review Article

Critical appraisal of water quality model parameters for an urban city in lower Ganga basin during pre- and post-COVID19 Lockdown in India

Received Date:07 February 2021, Accepted Date:29 July 2021, Published Date:08 September 2021


Objectives: To assess the impact of urban city Patna on water quality of the river Ganga during pre and post COVID-19 lockdown. Method: A study is done to assess the impact of point and nonpoint source pollution at different reaches of river Ganga for the years 2017 to 2020 (at a stretch of 40 km of a urban city in lower Ganga plains). A total of 450 datasets have been collected from eight river locations and two major drains. The equations of deoxygenation and reaeration coefficient used in water quality modelling have been tested for their applicability in the study area. Findings: Analysis of water quality data collected from 8 river locations and 2-drains for the year 2017-2020 shows significant improvement in water quality variables observed in river Ganga at Patna due to reduction in influx of point and non-point source pollution including floating population at Patna during COVID19 lockdown (March- June 2020). The use of BOD-DO developed by Streeter-Phelps (1925) as Oxygen-Sag curve is still valid, if input variables are limited. However, Camp (1963) and Jha et al. (2007) may be used effectively for comprehensive input data sets. Moreover, the refined model for predicting reaeration coefficient has been tested for the developed dissolved oxygen (DO) model and biochemical oxygen demand (BOD) model for pre- and post COVID19 lockdown individually. The water quality maps developed using satellite (Landsat-8) data provides the turbidity levels during pre and post COVID19 countrywide lockdown period and resulted in a significant improvement. Novelty: The study is unique due to water quality analysis during COVID19 and its comparison with previous year data. The deoxygenation and reaeration coefficients values are established for pre-and post COVID period. Also use of Landsat-8 data is used for assessing turbidity for pre- and post-COVID19.

Keywords: point source pollution; COVID 19; BODDO modelling; nonpoint pollution


  1. Apha, Standard. Methods for the Examination of Water and Wastewater 16th Edn. (pp. 1268) Washington, DC. American Public Health Association. 1985.
  2. Jha R, Ojha C, Bhatia K. Refinement of predictive reaeration equations for a typical India river. Hydrological Processes. 2021. 15.
  3. Streeter HW, Phelps EB. A study of the pollution and natural purification of the Ohio river. Public Health Service. 1925;(146).
  4. Wang C, Sun N, Yeh WW. An upstream weight multiple-cell balance finite-element method for solving three dimensional convection-dispersion equations. Water Resources Research. 1986;22(11):1575–1589.
  5. Adrian DD, Roider EM, Sanders TG. Oxygen Sag models for multi order biochemical oxygen demand reactions. Journal of Environmental Engineering. 2004;130(7):733–9372.
  6. Alshawabkeh A, Adrian DD. 1997. Available from: https://doi.org/10.1016/S0043-1354(96)00384-3
  7. Ambrose RB, Barnwell TO, Mccutcheon SC, Williams JR. Chapter 14: Computer models for water quality analysis. In: Water Resources Handbook, L.W. Mays. McGraw-Hill. 1996.
  8. Dogan E, Sengorur B, Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. Journal of Environmental Management. 2009;9(2):1229–1235.
  9. Ghosh NC, Mcbean EA. 1998. Available from: https://link.springer.com/article/10.1023/A:1004912216834
  10. Soumyashree K, Rathore VS, Ray PK, Champati S, Richa, Swain SK. Classification of river water pollution using Hyperion data”. Journal of Hydrology. 2016;537:221–233.
  11. Koussis AD, Kokitar P, Menta R. Modelling DO concent- rations in streams with dispersion. Journal of Environmental Engineering. 1990;116(3):601–614.
  12. Moog DB, Jirka GH. Analysis of reaeration equations using mean multiplicative error. Journal of the Environmental Engineering Division. 1998;112(2):733–9372.
  13. Basant N, Gupta S, Malik A, Singh KP. 2010. Available from: https://doi.org/10.1016/j.chemolab.2010.08.005
  14. Hasan N, Prasad R. A Study of Water Pollution of River Ganga During Lockdown Period. Uttar Pradesh Journal of Zoology. 2021;42(5):32–39.
  15. Jain CK_. Application of chemical mass balance to upstream/ downstream river monitoring data. Journal of Hydrology. 1996;182:105–115.
  16. Jha R, Ojha CSP, Bhatia KKS. A supplementary approach for estimating reaeration coefficients. Hydrological Processes. 2004;18:65–79.
  17. Sattari MT, Joudi AR, Kusiak A. Estimation of water quality parameters with data-driven model. Journal. American. Water Works Association. 2016;108:232–239.
  18. Vinod T, Singh YAV, Purnendu B. Elsevier. 2003. Available from: https://doi.org/10.1016/s0043-1354(01
  19. Thomann RV, Muller JA. Principles of surface water quality modelling and control. New York. Harper and Row Publisher. 1987.
  20. Van Genuchten MT, Alves WJ. Analytical solutions of the one-dimensional convective-dispersive solute transport equation. Agricultural Research Service. 1982;(84) 90020–90029.
  21. Yu FX, Adrian DD, Singh. Modelling river quality by the superposition method. Journal Environment Systems. 1991;20(4):90204–90210.
  22. Bhargava DS. Most rapid BOD assimilation in Ganga and Yamuna rivers. Journal of Environmental Engineering. 1983;109(1):1–174.
  23. Dimri DD, Achlesh ;, Kumar, Ambika, Sharma A. Monitoring water quality of River Ganga using multivariate techniques and WQI (Water Quality Index) in Western Himalayan region of Uttarakhand. India. Environmental Nanotechnology, Monitoring & Management. 2021;15.
  24. Dutta V, Dubey D, Kumar S. 2020. Available from: https://doi.org/10.1016/j.scitotenv.2020.140756
  25. Kumar A;, Taxak AK, Mishra, Saurabh ;, Pandey R. Available from: https://doi.org/10.1016/j.eti.2021.101405
  26. Priya M, Malhotra S, Kumar J, Neeshma. Ganga River Water Pollution: A Review”. Asian Journal of Biochemical and Pharmaceutical Research. 2016;6(2):2231–2560.
  27. Muduli PR, Kumar A, Kanuri VV. Water quality assessment of the Ganges River during COVID-19 lockdown. International Journal of Environmental Science and Technology. 2021.
  28. Anju P, Sapana B, Sourabh D, Ashok A, Asha B, Santosh R. Water Quality Assessment of River Ganga using Remote Sensing and GIS Technique. International Journal of Advanced Remote Sensing and GIS. 2015;4(1):1253–1261.
  29. Shikha S, Arijit R, Madhoolika A. Springer. 2016. Available from: https://doi.org/10.1007/s11356-016-7411-9
  30. Singh K, Jha R. RJ, VPS, VS, LBRaRT., eds. Assessment of water quality in River Ganga at Patna, India. Hydraulics, Water Resources and Coastal Engineering: Groundwater and water quality. (Vol. 5, pp. 40-48) USA Book. Springer. 2021.
  31. Jha R, Ojha CSP, Bhatia KKS. Development of refined BOD and DO models for highly polluted Kali river in India. Journal of Environmental Engineering. 2007;133(8)8):733–9372.


© 2021 Singh & Jha. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.