• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2016, Volume: 9, Issue: 33, Pages: 1-13

Original Article

Data Association and Prediction for Tracking Multiple Objects


Objectives: Tracking moving objects is essential for high level computer vision analysis, like object behavior interpretation or gait recognition etc. In this paper, a new method to track multiple moving objects in the surveillance video sequence is proposed. Methods/Statistical Analysis: Object tracking is done by extracting color moments feature from the segmented foreground object and associating individual objects in the successive frames using nearest neighbor classifier and ChiSquare dissimilarity measure. Further, object tracking during occlusion has been addressed by predicting the missing state of the occluded object by applying Lagrange’s polynomial extrapolation using the apriori knowledge. Findings: The proposed method is evaluated using several challenging sequences of the benchmark IEEE PETS, IEEE CHANGE DETECTION, and EPFL dataset. Further, comparative evaluation with contemporary methods has been carried out to corroborate the efficacy of the proposed method. Application/Improvements: This work focuses on devising a new method to track multiple moving objects using color moments and Lagrange’s extrapolation framework which works for a complex environment and in the presence of occlusions. Further, the shadow elimination task after the motion segmentation could be considered as an improvement step in this work which will aid in better tracking results.
Keywords: Color Moments, Lagrange’s Extrapolation, Multiple Objects Tracking, Object Tracking, Video Surveillance


Subscribe now for latest articles and news.