• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 1, Pages: 26-37

Original Article

Data Complexity-Based Evaluation Using Brain Magnetic Resonance Images to Determine Alzheimer’s Disease

Received Date:05 September 2023, Accepted Date:03 November 2023, Published Date:05 January 2024


Objectives: This study aims to develop a robust diagnostic model for Alzheimer's Disease using a curated MRI dataset from Kaggle, integrating the BABC algorithm with a Random Forest classifier for precise classification. Methods : Feature extraction employed a modified LeNet model, effectively capturing crucial low-intensity pixel information. Additionally, the study integrated a binary version of the BABC algorithm for streamlined feature selection, enhancing data dimensionality and overall model efficacy. Findings : The study's findings mark a notable breakthrough in Alzheimer's Disease (AD) diagnosis. The model, which seamlessly combines the Biologically Inspired Artificial Bee Colony (BABC) algorithm and the Random Forest (RF) classifier, achieved an impressive accuracy of 98.97%. Furthermore, it exhibited a high recall rate of 97.22% and maintained precise precision at 97.59%. The robust F1-Score reached 98.63%, and a noteworthy specificity of 96.12% highlighted the model's ability to accurately classify diverse AD stages. Notably, the incorporation of a comprehensive confusion matrix enriched the study, offering profound insights into the model's predictive prowess. This comprehensive evaluation underscores the model's reliability and effectiveness in identifying various AD stages, positioning it as a promising tool for clinical diagnosis and research in neurodegenerative disorders. The proposed study's diagnostic model facilitates early intervention and effective treatment by identifying individuals at risk of Alzheimer's disease through cognitive assessments, neuroimaging, and biomarker analysis. Novelty: The integration of BABC with RF enhances AD diagnosis, promising improved accuracy and specificity, and fostering more effective management and treatment strategies.

Keywords: Alzheimer's disease, Deep Neural Network, Magnetic resonance imaging, Machine learning, Random Forest


  1. Guan R, Wen X, Liang Y, Xu D, He B, Feng X. Trends in Alzheimer's Disease Research Based upon Machine Learning Analysis of PubMed Abstracts. International Journal of Biological Sciences. 2019;15(10):2065–2074. Available from: http://dx.doi.org/10.7150/ijbs.35743
  2. Hazarika RA, Maji AK, Sur SN, Paul BS, Kandar D. A Survey on Classification Algorithms of Brain Images in Alzheimer’s Disease Based on Feature Extraction Techniques. IEEE Access. 2021;9:58503–58536. Available from: http://dx.doi.org/10.1109/access.2021.3072559
  3. Zhang Y, Wang S, Xia K, Jiang Y, Qian P. Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion. Information Fusion. 2021;66:170–183. Available from: http://dx.doi.org/10.1016/j.inffus.2020.09.002
  4. Hao X, Bao Y, Guo Y, Yu M, Zhang D, Risacher SL, et al. Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease. Medical Image Analysis. 2020;60:101625. Available from: http://dx.doi.org/10.1016/j.media.2019.101625
  5. Shao W, Peng Y, Zu C, Wang M, Zhang D. Hypergraph based multi-task feature selection for multimodal classification of Alzheimer's disease. Computerized Medical Imaging and Graphics. 2020;80:101663. Available from: http://dx.doi.org/10.1016/j.compmedimag.2019.101663
  6. Rehman A, Naz S, Razzak MI, Akram F, Imran M. A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning. Circuits, Systems, and Signal Processing. 2020;39(2):757–775. Available from: http://dx.doi.org/10.1007/s00034-019-01246-3
  7. Allen MD, Springer DA, Burg MB, Boehm M, Dmitrieva NI. Suboptimal hydration remodels metabolism, promotes degenerative diseases, and shortens life. JCI Insight. 2019;4(17):1–17. Available from: http://dx.doi.org/10.1172/jci.insight.130949
  8. Kim JS, Han JW, Bae JB, Moon DG, Shin J, Kong JE, et al. Deep learning-based diagnosis of Alzheimer’s disease using brain magnetic resonance images: an empirical study. Scientific Reports. 2022;12(1):1–8. Available from: http://dx.doi.org/10.1038/s41598-022-22917-3
  9. Ahmed HM, Elsharkawy ZF, Elkorany AS. Alzheimer disease diagnosis for magnetic resonance brain images using deep learning neural networks. Multimedia Tools and Applications. 2023;82(12):17963–17977. Available from: http://dx.doi.org/10.1007/s11042-022-14203-1
  10. El-Latif AAA, Chelloug SA, Alabdulhafith M, Hammad M. Accurate Detection of Alzheimer’s Disease Using Lightweight Deep Learning Model on MRI Data. Diagnostics. 2023;13(7):1–21. Available from: http://dx.doi.org/10.3390/diagnostics13071216
  11. Hazarika RA, Maji AK, Kandar D, Jasinska E, Krejci P, Leonowicz Z, et al. An Approach for Classification of Alzheimer’s Disease Using Deep Neural Network and Brain Magnetic Resonance Imaging (MRI) Electronics. 2023;12(3):1–17. Available from: http://dx.doi.org/10.3390/electronics12030676
  12. Patil V, Madgi M, Kiran A. Early prediction of Alzheimer's disease using convolutional neural network: a review. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2022;58(1):1–10. Available from: http://dx.doi.org/10.1186/s41983-022-00571-w
  13. Folego G, Weiler M, Casseb RF, Pires R, Rocha A. Alzheimer's Disease Detection Through Whole-Brain 3D-CNN MRI. Frontiers in Bioengineering and Biotechnology. 2020;8:1–14. Available from: http://dx.doi.org/10.3389/fbioe.2020.534592
  14. Khan R, Akbar S, Mehmood A, Shahid F, Munir K, Ilyas N, et al. A transfer learning approach for multiclass classification of Alzheimer's disease using MRI images. Frontiers in Neuroscience. 2022;16:1–13. Available from: http://dx.doi.org/10.3389/fnins.2022.1050777
  15. Hajamohideen F, Shaffi N, Mahmud M, Subramanian K, Al-Sariri A, Vimbi V, et al. Four-Way Classification of Alzheimer's Disease using Deep Siamese Convolutional Neural Network with Triplet-Loss Function. Brain Informatics. 2023;p. 1–17. Available from: http://dx.doi.org/10.21203/rs.3.rs-2323332/v1
  16. Begum AP, Selvaraj P. Alzheimer’s disease classification and detection by using AD-3D DCNN model. Bulletin of Electrical Engineering and Informatics. 2023;12(2):882–890. Available from: http://dx.doi.org/10.11591/eei.v12i2.4446
  17. Abuhmed T, El-Sappagh S, Alonso JM. Robust hybrid deep learning models for Alzheimer’s progression detection. Knowledge-Based Systems. 2021;213:106688. Available from: http://dx.doi.org/10.1016/j.knosys.2020.106688
  18. Odusami M, Maskeliūnas R, Damaševičius R. An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging. Sensors. 2022;22(3):1–21. Available from: http://dx.doi.org/10.3390/s22030740
  19. Amini M, Pedram M, Moradi A, Ouchani M. Diagnosis of Alzheimer’s Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN) Computational and Mathematical Methods in Medicine. 2021;2021:1–15. Available from: http://dx.doi.org/10.1155/2021/5514839


© 2024 Kumar.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.