• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 2, Pages: 119-130

Original Article

Data mining techniques for classifying and predicting Teachers’ performance based on their evaluation reports

Received Date:28 November 2021, Accepted Date:02 January 2021, Published Date:18 January 2021


Background/Objectives: Teachers’ performance is a key bridge to ensure successful pedagogical and educational objectives. However, the evaluation of teachers’ performance has been used to be a manual and temperamental task for school principals. This traditional context limits the teachers’ engagement to develop his/her performance as well as the principle to predict the strengths and weaknesses attached. Hence, schools’ principals need to use initiative methods to evaluate the teachers’ performance. In this study, a comparative approach was developed to evaluate the teachers’ performance aiming at avoiding the potential biased and temperamental human behaves in the teacher’s evaluation process. Methods: It involves different Data Mining (DM) techniques to identify the key patterns that are driving the teachers’ performance evaluation process. Therefore, the proposed approach extracts several potential and influential indicators mined from a paper-based on teachers’ performance reports at the Directorate of Education/ Southern Ghawrs, along with some demographics variables. Several DM algorithms are used to analyze teachers’ performance reports and predict their performance, such as NB Tree, Naïve Bayes, and Conjunctive Rule methods. Findings: The experimental results show a significant prediction accuracy improvement by (33%) when applying NB Tree compared to Conjunctive rule, and (12%) when compared to Naïve Bayes techniques respectively.

Keywords: Data mining; machine learning; teachers’ performance; evaluation reports; Jordan


  1. Maghasbeh MKA, Khraisat HMM. Towards A Multi Agent System Based Data Mining for Proteins Prediction and Classification. J. Sci. Technol. Res. 2015;4.
  2. Burgos C, Campanario ML, Peña Ddl, Lara JA, Lizcano D, Martínez MA. Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout. Computers & Electrical Engineering. 2018;66:541–556. Available from: https://dx.doi.org/10.1016/j.compeleceng.2017.03.005
  3. Awad M, Salameh K, Leiss EL. Evaluating Learning Management System Usage at a Small University. Proceedings of the 2019 3rd International Conference on Information System and Data Mining. 2019;p. 98–102.
  4. Mohamad SK, Tasir Z. Educational Data Mining: A Review. Procedia - Social and Behavioral Sciences. 2013;97:320–324. Available from: https://dx.doi.org/10.1016/j.sbspro.2013.10.240
  5. Ogor EN. Student academic performance monitoring and evaluation using data mining techniques. Electronics, Robotics and Automotive Mechanics Conference. 2007;p. 354–359.
  6. Papamitsiou Z, Economides AA. Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. J. Educ. Technol. Soc. 2014;17(4):49–64.
  7. Shahiri AM, Husain W, Rashid NA. A Review on Predicting Student's Performance Using Data Mining Techniques. Procedia Computer Science. 2015;72:414–422. Available from: https://dx.doi.org/10.1016/j.procs.2015.12.157
  8. Ali MM. Role of data mining in education sector. Int. J. Comput. Sci. Mob. Comput. 2013;2(4):374–383.
  9. Chalaris M, Gritzalis S, Maragoudakis M, Sgouropoulou C, Tsolakidis A. Improving Quality of Educational Processes Providing New Knowledge Using Data Mining Techniques. Procedia - Social and Behavioral Sciences. 2014;147:390–397. Available from: https://dx.doi.org/10.1016/j.sbspro.2014.07.117
  10. Al-Barrak MA, , Al-Razgan M, . Predicting Students Final GPA Using Decision Trees: A Case Study. International Journal of Information and Education Technology. 2016;6(7):528–533. Available from: https://dx.doi.org/10.7763/ijiet.2016.v6.745
  11. Pal AK, Pal S. Evaluation of teacher’s performance: a data mining approach. Int. J. Comput. Sci. Mob. Comput. 2013;2(12):359–369.
  12. Ahmadi F, Abadi MESA. Data Mining in Teacher Evaluation System using WEKA. International Journal of Computer Applications. 2013;63(10):12–18. Available from: https://dx.doi.org/10.5120/10501-5268
  13. MARDIKYAN S, BADUR B. Analyzing Teaching Performance of Instructors Using Data Mining Techniques. Informatics in Education. 2011;10(2):245–257. Available from: https://dx.doi.org/10.15388/infedu.2011.17
  14. Alom BMM, Courtney M. Educational data mining: a case study perspectives from primary to university education in australia. Int. J. Inf. Technol. Comput. Sci. 2018;10(2):1–9.
  15. Chaware AN, Lanjewar UA. A Novel Educational Datamining Model to Attain Sustainability. Int. J. Adv. Res. Comput. Sci. 2014;5(1).
  16. Dua S, Du X. Data mining and machine learning in cybersecurity. CRC press. 2016.
  17. Galdi P, Tagliaferri R. Data mining: Accuracy and error measures for classification and prediction. Encycl. Bioinforma. Comput. Biol. 2018;p. 431–436.


© 2021 Salem et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.