• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 46, Pages: 3416-3424

Original Article

DC Conductivity of Lithium-Zinc-Boro- Phosphate Glasses

Received Date:20 October 2021, Accepted Date:12 December 2021, Published Date:24 December 2021

Abstract

Objectives: Investigation of electrical transport properties of glass system in the composition (P2O5)0:65􀀀x(B2O3)0:1 (ZnO)0:25 (Li2O) x where x=0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40 and establish the conduction mechanisms. Methods: Glasses were synthesized using the standard melt quenching technique at 1473K. The samples were confirmed to be amorphous through XRD studies. An independent measurement of dc conductivity was carried out for temperature range 300-620K, by following two probe method. Findings: Conductivity of the present glasses is found to be of the order of 10-3 (Ω m)-1 which is higher than the reported values for lithium-ion solid-state electrolytes. Conductivity variation with temperature obeyed Mott’s Small Polaron Hopping at high temperatures and Variable Range Hopping at low temperatures. SPH model fits to the conductivity gave activation energies in the range 58-409 meV. VRH model fits gave density of states at Fermi level of the order of 1023 eV-1m-3. The nano-crystallite phases identified and determined size found to be in the range 5-37 nm and considered to be a glass-nanocomposites. Novelty/Applications: For the first time, zinc-lithium-borophosphate glasses are investigated for conduction mechanisms. Activation energy and density of states at the Fermi level are determined. At high temperature Mott’s SPH model and at low temperature Mott’s VRH model are found to be suitable to explain conductivity of these glasses.

Keywords: Boro Phosphate glasses; Small Polaron Hopping; activation energy; Variable Range Hopping; the density of states; conduction mechanism

References

  1. Chatterjee A, Ghosh A. Correlation between ion transport and network structure of Li 2 O-P 2 O 5 glasses. Solid State Ionics. 2018;314:1–8. doi: 10.1016/j.ssi.2017.11.009
  2. Kim YS, Choi WG, Ryu BK. Effect of ZnO content change on the structure and properties of zinc borophosphate glasses. Glass Physics and Chemistry. 2014;40(4):408–414. doi: 10.1134/s1087659614040142
  3. Tho TD, Prasada Rao R, Adams S. Structure property correlation in lithium borophosphate glasses. The European Physical Journal E. 2012;35(1). doi: 10.1140/epje/i2012-12008-y
  4. Koudelka L, Mošner P, Zeyer-Düsterer M, Jäger C. Study of potassium–zinc borophosphate glasses. Journal of Physics and Chemistry of Solids. 2007;68(4):638–644. doi: 10.1016/j.jpcs.2007.02.012
  5. Koudelka LJ, Jirák J, Mošner P, Montagne L, Palavit G. Study of lithium–zinc borophosphate glasses. Journal of Materials Science. 2006;41(14):4636–4642. doi: 10.1007/s10853-006-0031-x
  6. Venkateshwararao P, Raju G, Prasad P, Laxmikanth C, Veeraiah N. Transport and spectroscopic properties of nickel ions in ZnO-B2O3-P2O5 glass system. International Journal for Light and Electron Optics. 2015. doi: 10.1016/j.ijleo.2015.12.056
  7. Cetinkaya Colak S, Akyuz I, Atay F. On the dual role of ZnO in zinc-borate glasses. Journal of Non-Crystalline Solids. 2016;432:406–412. doi: 10.1016/j.jnoncrysol.2015.10.040
  8. Dawalappa B, Husenkhan T, Sankarappa A, Malge JS, Ashwajeet T, Sujatha. Dielectric and AC conductivity studies in Li2O dopednvanado-zinc-boro-phosphate glass nano composites. Proceedings of the International Conference on Advanced Materials:AIP Conf.Proc. India. 2019;2162:20100–20101. doi: 10.1063/1.5130310
  9. Nagaraja N, Sankarappa T, Prashant Kumar M. Electrical conductivity studies in single and mixed alkali doped cobalt–borate glasses. Journal of Non-Crystalline Solids. 2008;354(14):1503–1508. doi: 10.1016/j.jnoncrysol.2007.08.042
  10. Devidas GB, Sankarappa T, Chougule BK, Prasad G. DC conductivity in single and mixed alkali vanadophosphate glasses. Journal of Non-Crystalline Solids. 2007;353(4):426–434. doi: 10.1016/j.jnoncrysol.2006.12.011
  11. Ashwajeet JS, Sankarappa T, Ramanna R, Sujatha T, Nagaraja N, Vijayakumar B. Electrical Conduction in Borophosphate Glasses Doped with CoO and Li2O. Research Journal of Materials Sciences. 2015;3(4):1–6.
  12. Thipperudra A, Manjunatha HL, Puspalatha P, Kumar YT, Ravikiran. DC conductivity of Li2O and SrO doped borophosphate glasses. Journal Of Physics: Conferences Series. 2021;1921:12106–12107. doi: 10.1088/1742-6596/1921/1/012106
  13. Daefalla M, Tawat M. Jamel Basha Adlan, MatJohrAbdullah. DC electrical conductivity of semiconducting cobalt-phosphate glasses. Journal Of Non-Crystalline Solids. 2011;357(10):2152–2155. doi: 10.1016/j.jnoncrysol.2011.02.011
  14. Megha A, Salorkar K, Gour VK, Deshpande. Study of ion conducting 40Li2O - 38B2O3 - 20SiO2 - 2P2O5 glass system with addition of Li2SO4. Journal of alloys and Compounds. 2021;865:158926–158927. doi: 10.1016/j.jallcom.2021.158926
  15. Deshpande VK, Tiple SR. Study of barium phosphate proton conducting glasses with MgO addition. IOP Conference Series: Materials Science and Engineering. 2009;2:012038. doi: 10.1088/1757-899x/2/1/012038
  16. Abd El Keriem MS. Mixed alkali Effect on structure and optical properties of quaternary B2O3 - P2O5 - Li2O - CaO Glass containing. International Journal of Physics and Research (IJPR). 2015;5(3):1–12.
  17. Raguenet B, Tricot G, Silly G, Ribes M, Pradel A. Revisiting the ‘mixed glass former effect’ in ultra-fast quenched borophosphate glasses by advanced 1D/2D solid state NMR. Journal of Materials Chemistry. 2011;21(44):17693. doi: 10.1039/c1jm12350e
  18. Kumar GR, Srikumar T, Rao MC, Reddy PV, Rao CS. Influence of cobalt ions on spectroscopic and dielectric properties of Sb2O3 doped lithium fluoroborophosphate glasses. Materials Research Express. 2018;5(3):035203. doi: 10.1088/2053-1591/aab4e6
  19. Ibrahim MM, Ahmed EM, FAw, Alanzi AK. Effect of lead oxide on the electrical transport properties of lithium -iron-borate glasses. Journal of Materials Science: Materials in Electronics. 2021;32:16069–16078. doi: 10.1007/s10854-021-06155-3
  20. V A Adhwaryu DK, Kanchan. Ag+ ion conduction in AgI-Ag2O-B2O3-P2O5 glass electrolyte. Materials Science & Engineering B. 2021;263:114857–114858. doi: 10.1016/j.mseb.2020.114857
  21. Pagoti R, Panda S, Patchapureddy V, Padhi RK, Subramania B, Jena H. Bhabani Shankar Panigrahi. Structural and spectroscopic investigations of neodymium doped strontium borophosphate glass. The Journal of Biological and Chemical Luminescence. 2021;p. 1–10. doi: 10.1002/bio.4112
  22. Ouis MA, Taha MA, El-Bassyouni GT, Azooz MA. Thermal, mechanical and electrical properties of lithium phosphate glasses doped with copper oxide. Bulletin of Materials Science. 2019;42(5):246. doi: 10.1007/s12034-019-1897-y
  23. Shruthi B, Madhu B. Structural, Dielectric and AC Conductivity Behaviour of Multicomponent TeO2-ZnO-Li2O-Na2O-B2O3 Glasses. Journal Of Nano - and Electronic Physics. 2021;13(4):4019–4020.
  24. Ishigaki N, Akimoto &J. Room temperature synthesis and phase transformation of lithium phosphate Li3PO4 as solid electrolyte. Journal of Asian Ceramic Societies. 2021;9(2):452–458. doi: 10.1080/21870764.2021.1891662
  25. Tomasz K, Pietrzak M, Wasiucionek JE, Garbarczyk. Towards Higher Electric conductivity and Wider Phase Stability via Nanostructured Glass-Ceramics Processing. Nanomaterials. 2021;11(5):1321–1324. doi: 10.3390/nano11051321

Copyright

© 2021 Husenkhan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.