• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 26, Pages: 2223-2237

Original Article

Design of centralized controller for multivariable process using MOPSO algorithm

Received Date:23 April 2021, Accepted Date:02 July 2021, Published Date:31 July 2021


Objective: To estimate centralized PID controller parameters for 4 outputs and 5 inputs crude distillation non-square system with RHP zeros process. Methods/Analysis: The Multi- Objective Particle Swam Optimization (MOPSO) algorithm is applied to determine the PID controller parameters for the considered distillation column process. Findings: The performance of the proposed controller is compared with two centralized controller schemes, Davison’s and Tanttu and Lieslehto methods. The Integral Square Error (ISE), Integral Absolute Error (IAE) and Integral of Time Absolute Error (ITAE) are chosen as performance indices. The simulation results prove that MOPSO tuned centralized controller gives the best performance when compared to other analytical techniques for both set point tracking and in disturbance rejection environment. Novelty: In practice, conventional PID controllers are tuned using classical methods, which require complex numerical calculations. In this paper, an attempt is made to fine tune the PID controller for a MIMO process using Multi Objective optimization technique and obtained challenging results as compared to conventional methods.

Keywords: Nonsquare system; Centralized control; Multi Objective Particle Swam Optimization; PID controller


  1. Sharma KLN, Chidambaram M. Centralized PI/PID controllers for non-square systems withRHP zeros. Journal Indian Institute of Science. 2005;85(4):201–214. Available from: http://journal.library.iisc.ernet.in/index.php/iisc/article/view/2361
  2. Ganesh P, Chidambaram M. Multivariable Controller Tuning for Non-square Systems with RHP Zeros by Genetic Algorithm. Chemical and Biochemical Engineering. 2010;24(1):17–22. Available from: https://hrcak.srce.hr/49477
  3. Liu JC, Chen N, XY, Tan S. Modified internal model control for non-square systems based on Smith delay compensator control. Sensors and Transducers. 2014;165(2):96–101.
  4. Guoa M, Chena J, Penga Y. The Control Method of Multivariable Time-delay Square System Containing Right Half Plane Zeros. Advances in control Engineering information science. 2014;15:1004–1009. Available from: 10.1016/j.proeng.2011.08.186
  5. Latha K, Rajinikanth V, Surekha PM. PSO-Based PID Controller Design for a Class of Stable and Unstable Systems. ISRN Artificial Intelligence. 2013;2013:1–11. Available from: https://dx.doi.org/10.1155/2013/543607
  6. Sivagurunathan G, Saravanan K. Design of PI Controller for a Non-linear Spherical Tank System Using Enhanced Bacterial Foraging Algorithm. Advances in Intelligent Systems and Computing. 2015;327:719–727. Available from: 10.1007/978-3-319-11933-5_81
  7. Zhao SZ, Iruthayarajan MW, Baskar S, Suganthan PN. Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization. Information Sciences. 2011;181(16):3323–3335. Available from: https://dx.doi.org/10.1016/j.ins.2011.04.003
  8. Rodríguez-Molina A, Mezura-Montes E, Villarreal-Cervantes MG, Aldape-Pérez M. Multi-objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem. Applied Soft Computing. 2020;93(106342). Available from: https://dx.doi.org/10.1016/j.asoc.2020.106342
  9. Reynoso-Meza G, Blasco X, Sanchis J, Martínez M. Controller tuning using evolutionary multi-objective optimisation: Current trends and applications. Control Engineering Practice. 2014;28:58–73. Available from: https://dx.doi.org/10.1016/j.conengprac.2014.03.003
  10. Fu H, Pan L, Xue YL, Sun L, Li DH, Lee KY, et al. Cascaded PI Controller Tuning for Power Plant Superheated Steam Temperature based on Multi-Objective Optimization. IFAC-PapersOnLine. 2017;50(1):3227–3231. Available from: https://dx.doi.org/10.1016/j.ifacol.2017.08.447
  11. Monica R, Sasireka M, Sujiprasad SJ, Senthilkumar A. Multi objective particle swarm Optimization based PID tuning of ball and beam. Journal of Control and Instrumentation. 2016;7(1):35–40. Available from: http://www.stmjournals.com/index.php?journal=JoCI&page=article&op=view&path%5B%5D=7226
  12. Perng JW, Kuo YC, Lu KC. Design of the PID Controller for Hydro-turbines Based on Optimization Algorithms. International Journal of Control, Automation and Systems. 2020;18(7):1758–1770. Available from: https://dx.doi.org/10.1007/s12555-019-0254-7
  13. Gomez N, Gomez V, Paiva E. Jorge Rodas and Raul Gregor1,” Flight Controller Optimization of Unmanned Aerial Vehicles using a Particle Swarm Algorithm. 2020 International Conference on Unmanned Aircraft Systems. 2020;p. 588–593. Available from: 10.1109/ICUAS48674.2020.9214003
  14. Kennedy J, Eberhart RC, Shi Y. Kaufmann M., ed. Swarm Intelligence. San Francisco, Calif, USA. 2001.
  15. Kotteeswarana R, Sivakuma L. Performance evaluation of optimal PI controller for ALSTOM gasifier during coal quality variations. Journal of Process Control. 2014;24(1):27–36. Available from: http://doi.org/10.1016/j.jprocont.2013.10.006
  16. Gunantara N. A review of multi-objective optimization: Methods and its applications. Cogent Engineering. 2008;5(1 (1502242)). Available from: https://doi.org/10.1080/23311916.2018.1502242


© 2021 Sivagurunathan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.