• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 21, Pages: 1758-1774

Original Article

Development of a Novel three degree of freedom XYθZ Micro-Motion Stage

Received Date:31 March 2021, Accepted Date:29 April 2021, Published Date:19 June 2021


Background: The piezoelectric motion with multi-degree of freedom is gaining attention in industries for modern manufacturing. High degree of positioning accuracy is obtained by complaint micro machining stages which involves high cost. A variety of stages of multi-degree motion freedom are proposed and applied for decades which can perform very high precision outputs in a wide travel range. Methodology: This paper mainly focuses on design, development and analysis of the 3 DOF (Degree of Freedom) XYqZ micro-motion stage. The role of each component of the stage is discussed. The various design processes are discussed and includes the discussion about the inputs to the design process as well as the constraints; both of which are dependent on the application for which the stage is used. Based on the design rules, an iterative optimization process is implemented and three design options are presented. Findings: The finite element modeling of all the design options are carried out. This is followed by performing deformation, static, fatigue and modal analysis on the three design options. The deformation analysis predicts that design 1 and design 2 offer a workspace of around 210 µm each along (X, Y) direction and 25 µrad along the Z direction while design 3 has deformation of 125 µm each along (X, Y) direction while 25 µrad along Z direction where as the fatigue analysis presented shows the life of around 105 cycles. Novelty: Using this technique the micro-motion stage is achieved for three degrees of freedom.


Micro motion stage, flexure hinges, modeling, 3 degrees of freedom


  1. Handley DC, Lu TF, Yong YK, Eales C. Workspace investigation of a 3 DOF compliant micro-motion stage. 8th Int Conf Control Autom Robot Vis. 2004;2:1279–1284. Available from: https://doi.org/10.1109/icarcv.2004.1469030
  2. Ling M, Howell LL, Cao J, Chen G. Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey. Applied Mechanics Reviews. 2020;72(3). Available from: https://dx.doi.org/10.1115/1.4045679
  3. Lobontiu N, Paine JSN, Garcia E, Goldfarb M. Corner-Filleted Flexure Hinges. Journal of Mechanical Design. 2001;123(3):346–352. Available from: https://dx.doi.org/10.1115/1.1372190
  4. Ling M, Wang J, Wu M, Cao L, Fu B. Design and modeling of an improved bridge-type compliant mechanism with its application for hydraulic piezo-valves. Sensors and Actuators A: Physical. 2021;324(112687). Available from: https://dx.doi.org/10.1016/j.sna.2021.112687
  5. Scire FE, Teague EC. Piezodriven 50‐μm range stage with subnanometer resolution. Review of Scientific Instruments. 1978;49(12):1735–1740. Available from: https://dx.doi.org/10.1063/1.1135327
  6. Awtar S, Parmar G. Design of a Large Range XY Nanopositioning System. Journal of Mechanisms and Robotics. 2013;5(2):1–13. Available from: https://dx.doi.org/10.1115/1.4023874
  7. Gan J, Zhang X, Li H, Wu H. Full closed-loop controls of micro/nano positioning system with nonlinear hysteresis using micro-vision system. Sensors Actuators, A Phys. 2017;257:125–133. Available from: https://doi.org/10.1016/j.sna.2017.02.013
  8. Wu X, Lu Y, Duan X, Zhang D, Deng W. Design and DOF analysis of a novel compliant parallel mechanism for large load. Sensors (Switzerland). 2019;19:1–18. Available from: https://doi.org/10.3390/s19040828
  9. Zhang S, Liu J, Ding H, Gao G. A novel compliance modeling method for compliant parallel mechanisms and its application. Mechanism and Machine Theory. 2021;162(104336). Available from: https://dx.doi.org/10.1016/j.mechmachtheory.2021.104336
  10. Tian Y, Shirinzadeh B, Zhang D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design. Precision Engineering. 2010;34(3):408–418. Available from: https://dx.doi.org/10.1016/j.precisioneng.2009.10.002
  11. Stage D, Handley DC. The Modelling and Optimal Design of a 3-DOF XYθZ Micro-Motion Stage. Adv Cancer Res. 2009;104:1–8.
  12. Lobontiu N, Paine JSN. Design of Circular Cross-Section Corner-Filleted Flexure Hinges for Three-Dimensional Compliant Mechanisms. Journal of Mechanical Design. 2002;124(3):479–484. Available from: https://dx.doi.org/10.1115/1.1480022
  13. Chen GM, Jia JY, Li ZW. On hybrid flexure hinges. IEEE Networking, Sens Control ICNSC2005 - Proc. 2005;p. 700–704. Available from: https://doi.org/10.1109/icnsc.2005.1461275
  14. Chen GM, Jia JY, Li ZW. Right-Circular Corner-Filleted flexure hinges. Proc 2005 IEEE Conf Autom Sci Eng IEEE-CASE. 2005;p. 249–53. Available from: https://doi.org/10.1109/COASE.2005.1506777
  15. Chang SH, Tseng CK, Chien HC. An ultra-precision XYθZ piezo-micropositioner part i: Design and analysis. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:897–905. Available from: https://doi.org/10.1109/58.775656
  16. Chang SH, Tseng CK, Chien HC. An ultra-precision XYθZ piezo-micropositioner part II: Experiment and performance. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:906–918. Available from: https://doi.org/10.1109/58.775657
  17. Guo Z, Tian Y, Liu C, Wang F, Liu X, Shirinzadeh B, et al. Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning. Robotics and Computer-Integrated Manufacturing. 2015;32:93–105. Available from: https://dx.doi.org/10.1016/j.rcim.2014.10.003
  18. Bhagat U, Shirinzadeh B, Clark L, Chea P, Qin Y, Tian Y. Design and analysis of a novel flexure-based 3-DOF mechanism. Mechanism and Machine Theory. 2014;74:173–187. Available from: https://dx.doi.org/10.1016/j.mechmachtheory.2013.12.006
  19. Clark L, Shirinzadeh B, Bhagat U, Smith J, Zhong Y. Development and control of a two DOF linear–angular precision positioning stage. Mechatronics. 2015;32:34–43. Available from: https://dx.doi.org/10.1016/j.mechatronics.2015.10.001
  20. Cai K, Tian Y, Wang F, Zhang D, Shirinzadeh B. Development of a piezo-driven 3-DOF stage with T-shape flexible hinge mechanism. Robotics and Computer-Integrated Manufacturing. 2016;37:125–138. Available from: https://dx.doi.org/10.1016/j.rcim.2015.07.004
  21. Xiao R, Shao S, Xu M, Jing Z. Design and Analysis of a Novel Piezo-Actuated XYθz Micropositioning Mechanism with Large Travel and Kinematic Decoupling. Advances in Materials Science and Engineering. 2019;2019:1–15. Available from: https://dx.doi.org/10.1155/2019/5461725
  22. Wang F, Liang C, Tian Y, Zhao X, Zhang D. A flexure-based kinematically decoupled micropositioning stage with a centimeter range dedicated to micro/nano manufacturing. IEEE/ASME Trans Mechatronics. 2016;21:1055–1065. Available from: https://doi.org/10.1109/TMECH.2015.2490803


© 2021 Navale et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.