• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 11, Pages: 1087-1096

Original Article

Discrimination of Soil Samples Collected from Haryana (India) Using Non-destructive ATR-FTIR Spectroscopy Coupled with Multivariate Statistical Analysis

Received Date:19 November 2023, Accepted Date:09 February 2024, Published Date:07 March 2024

Abstract

Objective: To discriminate and classify soil samples collected from different regions of Haryana, India. Methods: Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy with multivariate statistical tools is employed. A total of 232 samples were collected. A composite mixture of all districts was prepared, having twenty-nine top and twenty-nine depth soil samples. Chemometric methods, namely, PCA (Principal Component Analysis) and PCA-LDA (Principal Component Analysis-Linear Discriminant Analysis) were used to interpret the data. Findings: Soil samples are well characterized by their organic and inorganic contents. Sample clustering due to similarity in chemical composition was visualized using PCA. PCA-LDA resulted in 100% classification accuracy for top soil and 98.85% classification accuracy for depth soil. Blind test validation was carried out, which resulted in 100% and 80% prediction accuracies for top soil and depth soil respectively. The present research methodology effectively discriminated soil samples and can be utilized by forensic investigators dealing with cases that involve soil as vital evidence. Novelty: Study reveals novel unexplored geographical location, local soil variability, practical implications of non-destructive analytical technique combined with chemometrics methods, contextualization with the previous studies and the potential policy field relevance.

Keywords: Soil forensics, ATR­FTIR, PCA, LDA, Discrimination

References

  1. Sangwan P, Nain T, Singal K, Hooda N, Sharma N. Soil as a tool of revelation in forensic science: a review. Analytical Methods. 2020;12(43):5150–5159. Available from: https://doi.org/10.1039/D0AY01634A
  2. Allegretta I, Legrand S, Alfeld M, Gattullo CE, Porfido C, Spagnuolo M, et al. SEM-EDX hyperspectral data analysis for the study of soil aggregates. Geoderma. 2022;406:115540. Available from: https://doi.org/10.1016/j.geoderma.2021.115540
  3. Goydaragh MG, Taghizadeh-Mehrjardi R, Jafarzadeh AA, Triantafilis J, Lado M. Using environmental variables and Fourier Transform Infrared Spectroscopy to predict soil organic carbon. CATENA. 2021;202:105280. Available from: https://doi.org/10.1016/j.catena.2021.105280
  4. Koçak A, Wyatt W, Comanescu MA. Comparative study of ATR and DRIFT infrared spectroscopy techniques in the analysis of soil samples. Forensic Science International. 2021;328:111002. Available from: https://doi.org/10.1016/j.forsciint.2021.111002
  5. Pärnpuu S, Astover A, Tõnutare T, Penu P, Kauer K. Soil organic matter qualification with FTIR spectroscopy under different soil types in Estonia. Geoderma Regional. 2022;28:e00483. Available from: https://doi.org/10.1016/j.geodrs.2022.e00483
  6. Sauzier G, Bronswijk WV, Lewis SW. Chemometrics in forensic science: approaches and applications. The Analyst. 2021;146(8):2415–2448. Available from: https://doi.org/10.1039/D1AN00082A
  7. Gautam R, Vanga S, Ariese F, Umapathy S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Techniques and Instrumentation. 2015;2(1):1–38. Available from: https://doi.org/10.1140/epjti/s40485-015-0018-6
  8. Lei L, Massonnet G. Forensic analysis of white automotive paint of same manufacturer with Raman spectroscopy and chemometrics. Journal of Raman Spectroscopy. 2024;55(2):148–160. Available from: https://doi.org/10.1002/jrs.6626
  9. Madejova J, Komadel P. Baseline studies of the clay minerals society source clays: infrared methods. Clays and clay minerals. 2001;49(5):410–432. Available from: https://doi.org/10.1346/CCMN.2001.0490508
  10. Calderón F, Haddix M, Conant R, Magrini-Bair K, Paul E. Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy as a Method of Characterizing Changes in Soil Organic Matter. Soil Science Society of America Journal. 2013;77(5):1591–1600. Available from: https://doi.org/10.2136/sssaj2013.04.0131
  11. Ma F, Du C, Zhang Y, Xu X, Zhou J. LIBS and FTIR–ATR spectroscopy studies of mineral–organic associations in saline soil. Land Degradation & Development. 2021;32(4):1786–1795. Available from: https://doi.org/10.1002/ldr.3829
  12. Peltre C, Gregorich EG, Bruun S, Jensen LS, Magid J. Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biology and Biochemistry. 2017;104:117–127. Available from: https://doi.org/10.1016/j.soilbio.2016.10.016
  13. Saikia BJ, Parthasarathy G, Sarmah NC. Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bulletin of Materials Science. 2008;31(5):775–779. Available from: https://doi.org/10.1007/s12034-008-0123-0
  14. Calderón FJ, Reeves JB, Collins HP, Paul EA. Chemical Differences in Soil Organic Matter Fractions Determined by Diffuse‐Reflectance Mid‐Infrared Spectroscopy. Soil Science Society of America Journal. 2011;75(2):568–579. Available from: https://doi.org/10.2136/sssaj2009.0375
  15. Fakhry A, Osman O, Ezzat H, Ibrahim M. Spectroscopic analyses of soil samples outside Nile Delta of Egypt. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016;168:244–252. Available from: https://doi.org/10.1016/j.saa.2016.05.026
  16. Tinti A, Tugnoli V, Bonora S, Francioso O. Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review. Journal of Central European Agriculture. 2015;16(1):1–22. Available from: https://doi.org/10.5513/JCEA01/16.1.1535
  17. Dhillon GS, Gillespie A, Peak D, Rees KCJV. Spectroscopic investigation of soil organic matter composition for shelterbelt agroforestry systems. Geoderma. 2017;298:1–13. Available from: https://doi.org/10.1016/j.geoderma.2017.03.016
  18. Pedersen JA, Simpson MA, Bockheim JG, Kumar K. Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy. Organic Geochemistry. 2011;42(8):947–954. Available from: https://doi.org/10.1016/j.orggeochem.2011.04.003
  19. Chauhan R, Kumar R, Sharma V. Soil forensics: A spectroscopic examination of trace evidence. Microchemical Journal. 2018;139:74–84. Available from: https://doi.org/10.1016/j.microc.2018.02.020
  20. Zeng R, Rossiter DG, Zhao YG, Li DC, Zhang GL. Forensic soil source identification: comparing matching by color, vis-NIR spectroscopy and easily-measured physio-chemical properties. Forensic Science International. 2020;317:110544. Available from: https://doi.org/10.1016/j.forsciint.2020.110544
  21. Chen W, Peng L, Hu K, Zhang Z, Peng C, Teng C, et al. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction: A mirror of coherent structural variation. Journal of Hazardous Materials. 2020;393:122425. Available from: https://doi.org/10.1016/j.jhazmat.2020.122425
  22. Newland TG, Pitts K, Lewis SW. Multimodal spectroscopy with chemometrics: Application to simulated forensic soil casework. Forensic Chemistry. 2023;33:100481. Available from: https://doi.org/10.1016/j.forc.2023.100481
  23. Kikkawa HS, Naganuma K, Kumisaka K, Sugita R. Semi-automated scanning electron microscopy energy dispersive X-ray spectrometry forensic analysis of soil samples. Forensic Science International. 2019;305:109947. Available from: https://doi.org/10.1016/j.forsciint.2019.109947
  24. Paltseva AA, Deeb M, Iorio ED, Circelli L, Cheng Z, Colombo C. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy. Science of The Total Environment. 2022;809:151107. Available from: https://doi.org/10.1016/j.scitotenv.2021.151107
  25. Chauhan R, Kumar R, Kumar V, Sharma K, Sharma V. On the discrimination of soil samples by derivative diffuse reflectance UV–vis-NIR spectroscopy and chemometric methods. Forensic Science International. 2021;319:110655. Available from: https://doi.org/10.1016/j.forsciint.2020.110655
  26. Chauhan R, Kumar R, Diwan PK, Sharma V. Thermogravimetric analysis and chemometric based methods for soil examination: Application to soil forensics. Forensic Chemistry. 2020;17:100191. Available from: https://doi.org/10.1016/j.forc.2019.100191
  27. Prandel LV, Melo VF, Testoni SA, Brinatti AM, Saab SDC, Dawson LA. Spectroscopic techniques applied to discriminate soils for forensic purposes. Soil Research. 2020;58(2):151–160. Available from: https://doi.org/10.1071/SR19066

Copyright

© 2024 Sangwan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.