• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 41, Pages: 3093-3106

Original Article

Dynamic Compilation of Pattern based clustering and Volumetric Probabilistic Mining for Network Routing in Cognitive Radio Sensor Networks

Received Date:03 November 2021, Accepted Date:20 November 2021, Published Date:06 December 2021


Objectives: The key objective is to investigate the current state of the art in web service prediction systems and also to improve the retrieving process with improved accuracy and to reduce the searching time. As well as to enhance the performance of data validation, quality of services and speed of the process. Method: In this study, an advanced model of the Dynamic Compilation of Pattern (DCP) method with a Lexical Subgroup (LS) system was used to estimate the similarity between the request data and the entire network. These are all indexed and grouped as a cluster to form a paged format of network structure which can reduce the computation time during the searching period. Also, with the help of prediction, the relevancy of feature attributes in the network is predicted, and the matching index is sorted to provide the recommended data for given request data. This was achieved by using Volumetric Probabilistic Mining (VPM). Findings: The performance of the proposed DCP-VPM is proved through extensive simulations and compared to those of the state-of-the-art methods. On the average, it is realized that the DCP-VPM always outperforms EACRP, ERP, ESUCR and ESAC related to minimizing average energy consumption, packet delivery ratio, end-to-end delay at different number of clusters by 10.2%, 18.6%, 11.3%, 12.5% compared to EACRP, ERP, ESUCR and ESAC respectively. Proposed cluster-based routing technique out performs all other routing techniques. Novelty: Route based request prediction system was focused to predict and analyse data from the network. That is why enhanced clustering, distance-based similarity and retrieving mechanism are used. Irrelevant parameters removal and ordering are performed using DCP with LS system. Then nodes are processed for learning model using VPM prediction model. Finally, as the recommended result for the routing application, the matched data that is related to the request input is listed.

Keywords: Dynamic Compilation of Pattern; Lexical Subgroup system; Volumetric Probabilistic Mining; Request prediction; Cognitive Radio


  1. Pasichnyk V, Kunanets N, Veretennikova N, Rzheuskyi A, Nazaruk M. Simulation of the Social Communication System in Projects of Smart Cities. 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT). 2019;3. Available from: http://eiburs-ascimer.transyt-projects.com/files/05_TorregrosaMartin_AndreayMario_ConceptChallenges&Projects.pdf
  2. Li X, Xiao H, Tian J. Energy-Efficiency Maximization Based Resource Allocation for RF Energy Harvesting Underlay CRN With QoS Guarantee. 2019 IEEE 19th International Conference on Communication Technology (ICCT). 2019;p. 892–896. doi: 10.1109/ICCT46805.2019.8947013
  3. Vakili A, Navimipour NJ. Comprehensive and systematic review of the service composition mechanisms in the cloud environments. Journal of Network and Computer Applications. 2017;81:24–36. Available from: https://dx.doi.org/10.1016/j.jnca.2017.01.005
  4. Du Y, Xue L, Xu Y, Liu Z. An apprenticeship learning scheme based on expert demonstrations for cross-layer routing design in cognitive radio networks. AEU - International Journal of Electronics and Communications. 2019;107:221–230. Available from: https://dx.doi.org/10.1016/j.aeue.2019.05.041
  5. Lei Kj, Tan Yh, Yang X, Wang Hr. A K-means clustering based blind multiband spectrum sensing algorithm for cognitive radio. Journal of Central South University. 2018;25(10):2451–2461. Available from: https://dx.doi.org/10.1007/s11771-018-3928-z
  6. Sun C, Wang Y, Wan P, Du Y. A cooperative spectrum sensing algorithm based on principal component analysis and K-medoids clustering. 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). 2018;17. Available from: https://doi.org/10.1186/s13638-019-1338-z
  7. Magdalene AHS, Thulasimani L. Fuzzy Clustering Means (FCM) for Mitigating Spectrum Sensing Data Falsification (SSDF) Attack in Cognitive Radio Networks. 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). 2017.
  8. Zuo P, Wang X, Linghu W, Sun R, Peng T, Wang W. Prediction-Based Spectrum Access Optimization in Cognitive Radio Networks. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). 2018;p. 1–7. doi: 10.1109/PIMRC.2018.8580726
  9. Supraja P, Pitchai R, Raja. Spectrum Prediction in Cognitive Radio with Hybrid Optimized Neural Network. Mobile Networks and Applications. 2019;24(2):357–364. Available from: https://doi.org/10.1007/s11036-017-0909-7
  10. Harris A, Karachewski M, Schnabel N. Vehicle to Everything Communication using VLC. Electrical Engineering Senior Theses. 2018;44. Available from: https://scholarcommons.scu.edu/elec_senior/44
  11. Yao W, Yahya A, Khan F, Tan Z, Rehman AU, Chuma JM, et al. A Secured and Efficient Communication Scheme for Decentralized Cognitive Radio-Based Internet of Vehicles. IEEE Access. 2019;7:160889–160900. Available from: https://dx.doi.org/10.1109/access.2019.2945610
  12. Kang S, Joo C, Lee J, Shroff NB. Pricing for Past Channel State Information in Multi-Channel Cognitive Radio Networks. IEEE Transactions on Mobile Computing. 2018;17(4):859–870. Available from: https://dx.doi.org/10.1109/tmc.2017.2740931
  13. Bouihi B, Bahaj M. Ontology and Rule-Based Recommender System for E-learning Applications. International Journal of Emerging Technologies in Learning (iJET). 2019;14(15):4. Available from: https://dx.doi.org/10.3991/ijet.v14i15.10566
  14. Zareei M, Vargas-Rosales C, Hernndez RV, Azpilicueta E. Efficient Transmission Power Control for Energy-harvesting Cognitive Radio Sensor Network. 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops). 2019. doi: 10.1109/PIMRCW.2019.8880825.
  15. George R, Mary TAJ. Review on directional antenna for wireless sensor network applications. IET Communications. 2020;14(5):715–722. Available from: https://dx.doi.org/10.1049/iet-com.2019.0859
  16. Prajapat R, Yadav RN, Misra R. Energy-Efficient k-Hop Clustering in Cognitive Radio Sensor Network for Internet of Things. IEEE Internet of Things Journal. 2021;8(17):13593–13607. Available from: https://dx.doi.org/10.1109/jiot.2021.3065691
  17. Tripathi Y, Prakash A, Tripathi R. An Optimum Transmission Distance and Adaptive Clustering Based Routing Protocol for Cognitive Radio Sensor Network. Wireless Personal Communications. 2021;116(1):907–926. Available from: https://dx.doi.org/10.1007/s11277-020-07745-w
  18. Stephan T, Al-Turjman F, Suresh Joseph K, Balusamy B, Srivastava S. Artificial intelligence inspired energy and spectrum aware cluster based routing protocol for cognitive radio sensor networks. Journal of Parallel and Distributed Computing. 2020;142:90–105. doi: 10.1016/j.jpdc.2020.04.007
  19. Gatate V, Agarkhed J. Energy preservation and network critic based channel scheduling (EPNCS) in cognitive radio sensor networks. International Journal of Information Technology. 2021;13(1):69–81. Available from: https://dx.doi.org/10.1007/s41870-020-00523-8


© 2021 Sheelavant & Sumathi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.