• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 14, Pages: 1523-1534

Original Article

Dynamic mutation based glowworm swarm optimization with long short-term memory approaches for thyroid nodule classification

Received Date:28 March 2020, Accepted Date:01 April 2020, Published Date:31 May 2020


Objectives: To design an efficient approach for thyroid nodule classification with higher true positive rate. Methodology and statistical analysis: The proposed system designed as a Dynamic Mutation based Glowworm Swarm Optimization with Long-Short Term Memory (DMGSO with LSTM) scheme for thyroid nodule classification. In this proposed research work, input thyroid images are preprocessed by using Dynamically Weighted Median Filter (DWMF). The preprocessed images are segmented with the help of Region based Active Contour scheme. An Improved Local Binary Pattern (ILBP), Grey Level Cooccurrence Matrix (GLCM) and Histogram of Oriented Gradient (HOG) features are extracted from segmented image. Then the optimal features are selected by using Dynamic Mutation based Glowworm Swarm Optimization (DMGSO) algorithm. Finally, the Long-Short Term Memory (LSTM) scheme is utilized for classifying the thyroid nodule. Findings: The experimental results show that the proposed system achieves better performance compared with the existing system in terms of accuracy, precision, recall and f-measure.

Keywords: Thyroid nodule; Histogram of Oriented Gradient (HOG); Long Short-Term Memory (LSTM); Dynamic Mutation based Glow worm Swarm Optimization (DMGSO)


  1. Koundal D, Gupta S, Singh S. Computer aided thyroid nodule detection system using medical ultrasound images. Biomedical Signal Processing and Control. 2018;40:117–130. doi: 10.1016/j.bspc.2017.08.025
  2. Ospina NS, Maraka S, DeYcaza AE, O'Keeffe D, Brito JP, Gionfriddo MR, et al. Diagnostic accuracy of thyroid nodule growth to predict malignancy in thyroid nodules with benign cytology: systematic review and meta-analysis. Clinical Endocrinology. 2016;85(1):122–131. doi: 10.1111/cen.12975
  3. Chen SJ, Chang CY, Chang KY, Tzeng JE, Chen YT, Lin CW, et al. Classification of the thyroid nodules based on characteristic sonographic textural feature and correlated histopathology using hierarchical support vector machines. Ultrasound in medicine & biology. 2010;36(12):2018–2026.
  4. Chang CY, Liu HY, Tseng CH, Shih SR. Computer-aided diagnosis for thyroid graves' disease in ultrasound images. Biomedical Engineering: Applications, Basis and Communications. 2010;(02) 91–99.
  5. Gong Y. Multi-scale Orderless Pooling of Deep Convolutional Activation Features. European Conference on Computer Vision. 2014;p. 392–407. doi: arxiv.org/abs/1403.1840
  6. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems. 2012;p. 1097–1105.
  7. Ma L, Ma C, Liu Y, Wang X. Thyroid Diagnosis from SPECT Images Using Convolutional Neural Network with Optimization. Computational Intelligence and Neuroscience. 2019;2019:1–11. doi: 10.1155/2019/6212759
  8. Sathyapriya S, Anitha D. Modified Ant Colony Optimization With Modified Adaptive Network Based Fuzzy Inference System For Thyroid Nodule Classification”. International Journal of Scientific & Technology Research. 2019;8(9):1806–1816.
  9. Newell AJ, Griffin LD. Multiscale histogram of oriented gradient descriptors for robust character recognition. 2011 International Conference on Document Analysis and Recognition. 2011;p. 1085–1089.
  10. Mei X, Dong X, Deyer T, Zeng J, Trafalis T, Fang Y. IEEE Thyroid Nodule Benignty Prediction by Deep Feature Extraction. In: In 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE) . IEEE. p. 241–245.
  11. Zainal N, Zain AM, Radzi NHM, Othman MR. Glowworm swarm optimization (GSO) for optimization of machining parameters. Journal of Intelligent Manufacturing. 2016;27(4):797–804.
  12. Byeon W, Breuel TM, Raue F, Liwicki M. Scene labeling with LSTM recurrent neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015;p. 3547–3555.


Copyright: © 2020 Sathyapriya, Anitha. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.