• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 27, Pages: 1356-1363

Original Article

Effect of Annealing Temperature on Morphology, Structural and Magnetic Properties of Electrospun Nickel Oxide Nanofibers

Received Date:22 February 2022, Accepted Date:21 June 2022, Published Date:14 July 2022

Abstract

Objectives: To find how annealing temperature affected the morphological, structural, and magnetic properties of nickel oxide (NiO) nanofibers (NFs). Also to establish a link between magnetic characteristics and the vacancy defects generated by particle size effects. Methods: Cost-effective electrospinning method is used to fabricate NiO NFs by using Nickel nitrate hexahydrate Nickel (II) nitrate as a precursor and polyvinylpyrrolidone (PVP) as a polymer. Annealing of precursor NFs helps it to transform to NiO NFs. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) are used to study the morphological and structural properties of NiO NFs. We inspected elemental composition and molecular interactions with an X-ray photoelectron spectrometer (XPS) and Raman spectra. Vibrating sample magnetometer (VSM) measurements probe the magnetic properties. Findings: Changing the annealing temperature allows us to tune the particle size. The average NF diameter was reduced with annealing from 17330 nm for as-spun NFs to 11013 nm for 800◦C annealed NiO NFs. With a rise in annealing temperature from 400◦C to 800◦C, the particle diameter increased from 9.16 nm to 27 nm. We observed field-dependent magnetization for NiO NFs annealed at 400◦C, i.e. ferromagnetic (FM) with susceptibility of 0.3341 at lower magnetic fields and antiferromagnetic (AF) with susceptibility of 0.0096 at higher applied magnetic fields. With the rise in annealing temperature, the magnetization reduced. As shown in XPS studies, we estimated the variation in Ni vacancies and oxygen concentration with annealing temperature may be the reason for a change in the magnetic properties of NiO NFs, because of its particle size variation with annealing. Novelty: From the experimental results, we inferred a probable cause for the FM properties in the AF material. Because of their anomalous magnetic property, i.e. field-dependent magnetization, we can use NiO NFs annealed at 400◦C as a material for spintronic switching devices.

Keywords: Electrospinning; Nanofibers; Magnetic properties; Annealing temperature; Particle size

References

  1. Döpke C, Grothe T, Steblinski P, Klöcker M, Sabantina L, Kosmalska D, et al. Magnetic Nanofiber Mats for Data Storage and Transfer. Nanomaterials. 2019;9(1):92. Available from: https://doi.org/10.3390/nano9010092
  2. Khalil A, Kim JJ, Tuller HL, Rutledge GC, Hashaikeh R. Gas sensing behavior of electrospun nickel oxide nanofibers: Effect of morphology and microstructure. Sensors and Actuators B: Chemical. 2016;227:54–64. Available from: https://doi.org/10.1016/j.snb.2015.12.012
  3. Ling JK, Karuppiah C, Das S, Misnon II, Rahim MHA, Yang CCC, et al. Electrospun Ternary Composite Metal Oxide Fibers as an Anode for Lithium-Ion Batteries. Frontiers in Materials. 2022;9:1–10. Available from: https://doi.org/10.3389/fmats.2022.815204
  4. Blachowicz T, Ehrmann A. Most recent developments in electrospun magnetic nanofibers: A review. Journal of Engineered Fibers and Fabrics. 2020;15:155892501990084. Available from: https://doi.org/10.1177/1558925019900843
  5. Chen ZYY, Chen YY, Zhang QK, Tang XQ, Wang DD, Chen ZQ, et al. Vacancy-Induced Ferromagnetic Behavior in Antiferromagnetic NiO Nanoparticles: A Positron Annihilation Study. ECS Journal of Solid State Science and Technology. 2017;6(12):P798–P804. Available from: https://doi.org/10.1149/2.0081712jss
  6. Roy S, Katoch R, Angappane S. Large magnetoresistance in carbon-coated Ni/NiO nanoparticles. Bulletin of Materials Science. 2018;41(5):41. Available from: https://doi.org/10.1007/s12034-018-1645-8
  7. Kolathodi MS, Palei M, Natarajan TS. Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. Journal of Materials Chemistry A. 2015;3(14):7513–7522. Available from: https://doi.org/10.1039/C4TA07075E
  8. Aytan E, Debnath B, Kargar F, Barlas Y, Lacerda MM, Li JX, et al. Spin-phonon coupling in antiferromagnetic nickel oxide. Applied Physics Letters. 2017;111(25):252402. Available from: https://doi.org/10.1063/1.5009598
  9. Ravikumar P, Kisan B, Perumal A. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Advances. 2015;5(8):087116. Available from: http://dx.doi.org/10.1063/1.4928426
  10. Yang Z, Gao D, Tao K, Zhang J, Shi Z, Xu Q, et al. A series of unexpected ferromagnetic behaviors based on the surface-vacancy state: an insight into NiO nanoparticles with a core–shell structure. RSC Advances. 2014;4(86):46133–46140. Available from: https://doi.org/10.1039/C4RA06472K
  11. Gao D, Yang G, Li J, Zhang J, Zhang J, Xue D. Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures. The Journal of Physical Chemistry C. 2010;114(43):18347–18351. Available from: https://doi.org/10.1021/jp106015t
  12. Kumari S, Pradhan LK, Kumar L, Manglam MK, Kar M. Effect of annealing temperature on morphology and magnetic properties of cobalt ferrite nanofibers. Materials Research Express. 2019;6(12):1250a3. Available from: https://doi.org/10.1088/2053-1591/ab5fa1
  13. Gandhi AC, Pant J, Pandit SD, Dalimbkar SK, Chan TSS, Cheng CLL, et al. Short-Range Magnon Excitation in NiO Nanoparticles. The Journal of Physical Chemistry C. 2013;117(36):18666–18674. Available from: https://doi.org/10.1021/jp4029479
  14. Payne BP, Biesinger MC, Mcintyre NS. Use of oxygen/nickel ratios in the XPS characterisation of oxide phases on nickel metal and nickel alloy surfaces. Journal of Electron Spectroscopy and Related Phenomena. 2012;185(5-7):159–166. Available from: http://dx.doi.org/10.1016/j.elspec.2012.06.008
  15. Grosvenor AP, Biesinger MC, Smart RSC, Mcintyre NS. New interpretations of XPS spectra of nickel metal and oxides. Surface Science. 2006;600(9):1771–1779. Available from: https://doi.org/10.1016/j.susc.2006.01.041
  16. Argolo MIS, Silva LS, Siqueira JM, Miranda FDS, Medeiros ME, Garrido FMS. Structural and optical properties of Ni/NiO composites synthesized by eco-friendly self-propagation synthesis (SHS): Effects of NH4OH addition. Ceramics International. 2019;45(17):21640–21646. Available from: https://doi.org/10.1016/j.ceramint.2019.07.161
  17. Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M. Raman scattering in nanosized nickel oxide NiO. Journal of Physics: Conference Series. 2007;93(1):012039. Available from: https://doi.org/10.1088/1742-6596/93/1/012039
  18. Kisan B, Shyni PC, Layek S, Verma HC, Hesp D, Dhanak V, et al. Finite Size Effects in Magnetic and Optical Properties of Antiferromagnetic NiO Nanoparticles. IEEE Transactions on Magnetics. 2014;50(1):1–4. Available from: https://doi.org/10.1109/TMAG.2013.2278539
  19. Rinaldi-Montes N, Gorria P, Martínez-Blanco D, Fuertes AB, Barquín LF, Fernández JR, et al. Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order. Nanoscale. 2014;6(1):457–465. Available from: https://doi.org/10.1039/C3NR03961G
  20. Karthik K, Selvan GK, Kanagaraj M, Arumugam S, Jaya NV. Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method. Journal of Alloys and Compounds. 2011;509(1):181–184. Available from: http://dx.doi.org/10.1016/j.jallcom.2010.09.033

Copyright

© 2022 Rajasekhar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.