• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 10, Pages: 941-948

Original Article

Employing Incremental Learning for the Detection of Multiclass New Malware Variants

Received Date:12 November 2023, Accepted Date:07 February 2024, Published Date:27 February 2024


Background/Objectives: The study aims to achieve two main objectives. The first is to reliably identify and categorize malware variations to maintain the security of computer systems. Malware poses a continuous threat to digital information and system integrity, hence the need for effective detection tools. The second objective is to propose a new incremental learning method. This method is designed to adapt over time, continually incorporating new data, which is crucial for identifying and managing multiclass malware variants. Methods: This study utilised an incremental learning technique as the basis of the approach, a type of machine learning whereby a system retains previous knowledge and builds upon the information from the newly acquired data. Particularly, this method is suitable for tackling mutating character of malware dangers. The researchers used various sets of actual world malwares for evaluating the applicability of these ideas which serves as an accurate test environment. Findings: The findings of the research are significant. We utilizing 6 different datasets, which included 158,101 benign and malicious instances, the method demonstrated a high attack detection accuracy of 99.34%. Moreover, the study was successful in identifying a new category of malware variants and distinguishing between 15 different attack categories. These results underscore the effectiveness of the proposed incremental learning method in a real-world scenario. Novelty: This research is unique because of the novel use of a tailored incremental learning technique for dealing with dynamic threat environment of malwares. However, with a new threat they cannot be so well adapted using traditional machine learning methods. On the other hand, the technique put forward in this paper facilitates continuous learning that can be modified to match different types of malicious software as they develop. The ability to evolve and adapt is an important addition to current cybersecurity practices that include malware identification and classification.

Keywords: Cybersecurity, Malware Detection, Incremental learning


  1. Khan AS, Javed Y, Saqib RM, Ahmad Z, Abdullah J, Zen K, et al. Lightweight Multifactor Authentication Scheme for NextGen Cellular Networks. IEEE Access. 2022;10:31273–31288. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9734039
  2. Khan NA, Khan AS, Kar HA, Ahmad Z, Tarmizi S, Julaihi AA. Employing Public Key Infrastructure to Encapsulate Messages During Transport Layer Security Handshake Procedure. 2022 Applied Informatics International Conference (AiIC). 2022;p. 126–130. Available from: https://ieeexplore.ieee.org/abstract/document/9914605
  3. Darem AA, Ghaleb FA, Al-Hashmi AA, Abawajy JH, Alanazi SM, Al-Rezami AY. An Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model Using Concept Drift Detection and Sequential Deep Learning. IEEE Access. 2021;9:97180–97196. Available from: https://ieeexplore.ieee.org/abstract/document/9467300
  4. Habeeb RA, Nasaruddin F, Gani A, Hashem IA, EA, Imran M. Real-time big data processing for anomaly detection: A survey. International Journal of Information Management. 2019;45:289–307. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0268401218301658
  5. Cho W, Lee H, Han S, Hwang Y, Cho SJ. Sustainability of Machine Learning-based Android Malware Detection Using API calls and Permissions. 2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). 2022;p. 18–25. Available from: https://ieeexplore.ieee.org/abstract/document/9939136
  6. Lee H, Cho SJJ, Han H, Cho WJ, Suh K. Enhancing Sustainability in Machine Learning-based Android Malware Detection using API calls. 2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). 2022;p. 131–134. Available from: https://ieeexplore.ieee.org/abstract/document/9939276
  7. Rahouti M, Ayyash M, Jagatheesaperumal SK, Oliveira D. Incremental Learning Implementations and Vision for Cyber Risk Detection in IoT. IEEE Internet of Things Magazine. 2021;4(3):114–119. Available from: https://ieeexplore.ieee.org/abstract/document/9548988
  8. Stocco A, Tonella P. Towards Anomaly Detectors that Learn Continuously. 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). 2020;p. 201–208. Available from: https://ieeexplore.ieee.org/abstract/document/9307667
  9. Gu X, Zhao Y, Yang G, Li L. An Imbalance Modified Convolutional Neural Network With Incremental Learning for Chemical Fault Diagnosis. IEEE Transactions on Industrial Informatics. 2022;18(6):3630–3639. Available from: https://ieeexplore.ieee.org/abstract/document/9540239
  10. Kadam S, Vaidya V. Review and Analysis of Zero, One and Few Shot Learning Approaches. In: Advances in Intelligent Systems and Computing. (Vol. 1, pp. 100-112) Springer International Publishing. 2020.
  11. Tayyab UEHE, Khan FB, Durad MH, Khan AB, Lee YS. A Survey of the Recent Trends in Deep Learning Based Malware Detection. Journal of Cybersecurity and Privacy. 2022;2(4):800–829. Available from: https://www.mdpi.com/2624-800X/2/4/41
  12. Li S, Li Y, Wu X, Otaibi SA, Tian Z. Imbalanced Malware Family Classification Using Multimodal Fusion and Weight Self-Learning. IEEE Transactions on Intelligent Transportation Systems. 2023;24(7):7642–7652. Available from: https://ieeexplore.ieee.org/abstract/document/9913918
  13. Aslan O, Ozkan-Okay M, Gupta D. Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment. IEEE Access. 2021;9:83252–83271. Available from: https://ieeexplore.ieee.org/abstract/document/9448102
  14. Baptista I, Shiaeles S, Kolokotronis N. A Novel Malware Detection System Based on Machine Learning and Binary Visualization. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). 2019;p. 1–6. Available from: https://ieeexplore.ieee.org/abstract/document/8757060
  15. Hei Y, Yang R, Peng H, Wang L, Xu X, Liu J, et al. Hawk: Rapid Android Malware Detection Through Heterogeneous Graph Attention Networks. IEEE Transactions on Neural Networks and Learning Systems. 2021;p. 1–15. Available from: https://ieeexplore.ieee.org/abstract/document/9524453
  16. Rahman MS, Coull S, Wright M. On the Limitations of Continual Learning for Malware Classification. In Conference on Lifelong Learning Agents. 2022;p. 564–582. Available from: https://proceedings.mlr.press/v199/rahman22a.html
  17. Hsieh RJJ, Chou J, Ho CHH. Unsupervised Online Anomaly Detection on Multivariate Sensing Time Series Data for Smart Manufacturing. 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA). 2019;p. 90–97. Available from: https://ieeexplore.ieee.org/abstract/document/8953015
  18. Kaggle. Available from: https://www.kaggle.com/
  19. Malware Capture Facility Project. https://mcfp.weebly.com/. .


© 2024 Alzahrani.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.