• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 3, Pages: 277-285

Original Article

Entropy State-Regularized Recurrent Neural Network- Long Short Term Memory (ESRRNN-LSTM) and Classifier for COVID-19 Vaccine

Received Date:05 October 2023, Accepted Date:28 December 2023, Published Date:20 January 2024


Background: The subject of why some people refuse to receive certain vaccines during an ongoing public health crisis is particularly relevant because low vaccination rates will prolong the time it takes for many countries to recover from the coronavirus disease 2019 (COVID-19) pandemic. Thus, the prediction of user opinion who is taking COVID-19 vaccinations plays a significant role. Existing classification methods has the issue of handling larger dataset, and it becomes increased time complexity. Deep Learning (DL) model is solution for analyzing user opinions with increased tweets, and produces better performance. Objective: The major objective of the work is to design a new methodology for the prediction of user opinion using DL. DL is used to predict the evolution of the user opinion to coronavirus vaccination. Findings: Covid-19 Twitter Dataset has been collected from Kaggle. It consists of 2,35,240, 3,20,316, and 4,89,269 tweets for first, second, and third phase. Results of proposed ESRRNN-LSTM classifier is compared with existing methods like Modified Long Short-Term Memory (MLSTM) and Bi-LSTM. Results of classifiers are measured in terms of precision, recall, f-score, and accuracy. Proposed system has the highest results in terms of accuracy of 91.20%, precision of 90.00%, recall of 88.00% and F-Score of 87.00%. The five fold cross validation has been also performed to classifiers. Novelty: this work is resulted in developing an Entropy State-Regularized Recurrent Neural Network- Long Short Term Memory (ESRRNN-LSTM) for vaccination prediction from user opinion tweets. Parameters of classifier are optimized using the entropy function.

Keywords: COVID­19, Sentiment Analysis, Twitter, Deep Learning, Entropy State­


  1. Chauhan S, Banerjee R, Chakraborty C, Mittal M, Shiva A, Ravi V. A self-congruence and impulse buying effect on user’s shopping behaviour over social networking sites: an empirical study. International Journal of Pervasive Computing and Communications. 2021;17(4):404–425. Available from: https://doi.org/10.1108/IJPCC-01-2021-0013
  2. Chauhan S, Mittal M, Woźniak M, Gupta S, Prado RPD. A Technology Acceptance Model-Based Analytics for Online Mobile Games Using Machine Learning Techniques. Symmetry. 2021;13(8):1–21. Available from: https://doi.org/10.3390/sym13081545
  3. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, et al. Coronavirus Disease 2019–COVID-19. Clinical Microbiology Reviews. 2020;33(4):1–48. Available from: https://doi.org/10.1128/cmr.00028-20
  4. Rajini SNS, Anuradha K, Umadevi S, Beulah EM. Twitter Sentiment Analysis on Big Data in Spark Framework. In: 1st International Conference on Computational Engineering and Material Science (ICCEMS - 2020), IOP Conference Series: Materials Science and Engineering. (Vol. 925, pp. 1-7) IOP Publishing. 2020.
  5. Aslam B, Javed AR, Chakraborty C, Nebhen J, Raqib S, Rizwan M. RETRACTED ARTICLE: Blockchain and ANFIS empowered IoMT application for privacy preserved contact tracing in COVID-19 pandemic. Personal and Ubiquitous Computing. 2021. Available from: https://doi.org/10.1007/s00779-021-01596-3
  6. Jalil Z, Abbasi A, Javed AR, Khan MB, Hasanat MHA, Malik KM, et al. COVID-19 Related Sentiment Analysis Using State-of-the-Art Machine Learning and Deep Learning Techniques. Frontiers in Public Health. 2021;9:1–14. Available from: https://doi.org/10.3389/fpubh.2021.812735
  7. Ainapure BS, Pise RN, Reddy P, Appasani B, Srinivasulu A, Khan MS, et al. Sentiment Analysis of COVID-19 Tweets Using Deep Learning and Lexicon-Based Approaches. Sustainability. 2023;15(3):1–21. Available from: https://doi.org/10.3390/su15032573
  8. Chintalapudi N, Battineni G, Amenta F. Sentimental Analysis of COVID-19 Tweets Using Deep Learning Models. Infectious Disease Reports. 2021;13(2):329–339. Available from: https://doi.org/10.3390/idr13020032
  9. Verma R, Chhabra A, Gupta A. A statistical analysis of tweets on covid-19 vaccine hesitancy utilizing opinion mining: an Indian perspective. Social Network Analysis and Mining. 2023;13(1):1–12. Available from: https://doi.org/10.1007/s13278-022-01015-2
  10. Yousefinaghani S, Dara R, Mubareka S, Papadopoulos A, Sharif S. An analysis of COVID-19 vaccine sentiments and opinions on Twitter. International Journal of Infectious Diseases. 2021;108:256–262. Available from: https://doi.org/10.1016/j.ijid.2021.05.059
  11. Xu H, Liu R, Luo Z, Xu M. COVID-19 vaccine sensing: Sentiment analysis and subject distillation from twitter data. Telematics and Informatics Reports. 2022;8:1–13. Available from: https://doi.org/10.1016/j.teler.2022.100016
  12. Alotaibi W, Alomary F, Mokni R. COVID-19 vaccine rejection causes based on Twitter people’s opinions analysis using deep learning. Social Network Analysis and Mining. 2023;13(1):1–18. Available from: https://doi.org/10.1007/s13278-023-01059-y
  13. Villegas-Ch W, García-Ortiz J, Jaramillo-Alcazar A. An Approach Based on Recurrent Neural Networks and Interactive Visualization to Improve Explainability in AI Systems. Big Data and Cognitive Computing. 2023;7(3):1–21. Available from: https://doi.org/10.3390/bdcc7030136
  14. Kumar RL, Khan F, Din S, Band SS, Mosavi A, EI. Recurrent Neural Network and Reinforcement Learning Model for COVID-19 Prediction. Frontiers in Public Health. 2021;9:1–12. Available from: https://doi.org/10.3389/fpubh.2021.744100
  15. Alam KN, Khan MS, Dhruba AR, Khan MM, Al-Amri JF, Masud M, et al. Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data. Computational and Mathematical Methods in Medicine. 2021;2021:1–16. Available from: https://doi.org/10.1155/2021/4321131
  16. Nyawa S, Tchuente D, Fosso-Wamba S. COVID-19 vaccine hesitancy: a social media analysis using deep learning. Annals of Operations Research. 2022;16:1–39. Available from: https://doi.org/10.1007/s10479-022-04792-3
  17. Srikanth J, Damodaram A, Teekaraman Y, Kuppusamy R, Thelkar AR. Sentiment Analysis on COVID-19 Twitter Data Streams Using Deep Belief Neural Networks. Computational Intelligence and Neuroscience. 2022;2022:1–12. Available from: https://doi.org/10.1155/2022/8898100
  18. Karpathy A, Johnson J, Fei-Fei L. Visualizing and understanding recurrent networks. 2015. Available from: https://doi.org/10.48550/arXiv.1506.02078
  19. Arunkumar KE, Kalaga DV, Kumar CMS, Kawaji M, Brenza TM. Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells. Chaos, Solitons & Fractals. 2021;146:1–12. Available from: https://doi.org/10.1016/j.chaos.2021.110861
  20. Kumar RL, Khan F, Din S, Band SS, Mosavi A, Ibeke E. Recurrent Neural Network and Reinforcement Learning Model for COVID-19 Prediction. Frontiers in Public Health. 2021;9:1–12. Available from: https://doi.org/10.3389/fpubh.2021.744100
  21. Shim JGG, Ryu KHH, Lee SH, Cho EAA, Lee YJ, Ahn JH. Text Mining Approaches to Analyze Public Sentiment Changes Regarding COVID-19 Vaccines on Social Media in Korea. International Journal of Environmental Research and Public Health. 2021;18(12):1–9. Available from: https://doi.org/10.3390/ijerph18126549


© 2024 Sathya & Mythili. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.