• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 38, Pages: 1900-1906

Original Article

An Efficient Ensemble Model for Diagnosing Covid-19 and Pneumonia Using Chest X-Ray Images

Received Date:16 June 2022, Accepted Date:30 August 2022, Published Date:14 October 2022


Objectives : To propose an ensemble machine learning model for early identification of COVID-19 and pneumonia lung infections by analyzing the chest X-ray images. Methods: RGDSoft model is proposed for image classification which is a soft voting ensemble deep transfer learning strategy with pre-trained classifiers ResNet-18, GoogLeNet, and DenseNet-121. The model is tested on COVID-19 dataset having 1143 positive COVID-19, 1341 normal, and 1345 pneumonia images, and the Kermany dataset which has 5856 chest X-ray images divided into two groups: ”Pneumonia” and ”Normal”. Out of these image-set 80% of images are used for training and 20% for testing purposes. To demonstrate the efficiency of the proposed model, python is used for implementation. Performance results are evaluated and compared with the existing pre-trained models like GoogLeNet, ResNet18 and DensNet121. Findings: Efficiency of the proposed ensemble model is achieved with 98.1% accuracy level, 98.8% precision, 98.8% recall on kermany dataset whereas 94% accuracy, 96% precision and 96% recall on COVID-19 dataset which is optimum as compared with the most state-of-art models discussed in literature. Novelty: According to the findings of the comprehensive study, the proposed RGDSoft model not only outperforms most of the classifiers like GoogLeNet, ResNet18 and DenseNet121 in terms of combinations of accuracy, precision and recall but is so generic model which shows very good results on different datasets.

Keywords: Machine Learning; Deep Learning; Covid19; Pneumonia; xray images; googlenet; resnet18; densenet121; ensemble


  1. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv. 2017. Available from: https://doi.org/10.48550/arXiv.1711.05225
  2. Shoeibi A, Khodatars M, Alizadehsani R, Ghassemi N, Jafari M, Moridian P, et al. Automated detection and forecasting of covid-19 using deep learning techniques: A review. 2020. Available from: https://doi.org/10.48550/arXiv.2007.10785
  3. Maghdid HS, Asaad AT, Ghafoor KZG, Sadiq AS, Mirjalili S, Khan MKK. Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. Multimodal Image Exploitation and Learning 2021. 2021;11734:99–110. Available from: https://doi.org/10.1117/12.2588672
  4. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017;60(6):84–90. Available from: https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
  5. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim OA, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine. 2020;121:103792. Available from: https://doi.org/10.1016/j.compbiomed.2020.103792
  6. Deng J, Dong W, Socher R, Li LJJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009;p. 248–255. Available from: https://doi.org/10.1109/CVPR.2009.5206848
  7. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. 2015. Available from: https://doi.org/10.48550/arXiv.1512.00567
  8. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2015. Available from: https://doi.org/10.48550/arXiv.1512.03385
  9. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the AAAI Conference on Artificial Intelligence. 2017;31(1).
  10. Sharma H, Jain JS, Bansal P, Gupta S. Feature Extraction and Classification of Chest X-Ray Images Using CNN to Detect Pneumonia. 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence). 2020;p. 227–231. Available from: https://doi.org/10.1109/Confluence47617.2020.9057809
  11. Janizek JD, Erion G, Degrave AJ, Lee SII. An adversarial approach for the robust classification of pneumonia from chest radiographs. Proceedings of the ACM Conference on Health, Inference, and Learning. 2020;p. 69–79. Available from: https://doi.org/10.1145/3368555.3384458
  12. Varshni D, Thakral K, Agarwal L, Nijhawan R, Mittal A. Pneumonia Detection Using CNN based Feature Extraction. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). 2019;p. 1–7. Available from: https://doi.org/10.1109/ICECCT.2019.8869364
  13. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. 2017. Available from: https://doi.org/10.48550/arXiv.1711.05225
  14. Karim M, Döhmen T, Rebholz-Schuhmann D, Decker S, Cochez M, Beyan O, et al. Explainable COVID-19 diagnosis based on chest X-ray images. 2009. Available from: https://doi.org/10.48550/arXiv.2004.04582
  15. Albahli S, Rauf HT, Algosaibi A, Balas VE. AI-driven deep CNN approach for multi-label pathology classification using chest X-Rays. PeerJ Computer Science. 2021;7. Available from: https://doi. org/10.7717/peerjcs.495
  16. Kuo KM, Talley PC, Huang CH, Cheng LC. Predicting hospital-acquired pneumonia among schizophrenic patients: a machine learning approach. BMC Medical Informatics and Decision Making. 2019;19(1):1–8. Available from: https://doi.org/10.1101/2020.02.29.20029603
  17. Zhang J, Xie Y, Pang G, Liao Z, Verjans J, Li W, et al. Viral Pneumonia Screening on Chest X-Rays Using Confidence-Aware Anomaly Detection. IEEE Transactions on Medical Imaging. 2021;40(3):879–890. Available from: https://doi.org/10.1109/TMI.2020.3040950
  18. Jaiswal AK, Tiwari P, Kumar S, Gupta D, Khanna A, Rodrigues JJPC. Identifying pneumonia in chest X-rays: A deep learning approach. Measurement. 2019;145:511–518. Available from: https://doi.org/10.1016/j.measurement.2019.05.076
  19. Gabruseva T, Poplavskiy D, Kalinin A. Deep Learning for Automatic Pneumonia Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2020;p. 1436–1443. Available from: https://doi.org/10.1109/CVPRW50498.2020.00183
  20. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015;p. 1–9. Available from: https://doi.org/10.1109/CVPR.2015.7298594
  21. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016;p. 770–778. Available from: https://doi.org/10.1109/CVPR.2016.90
  22. Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017;p. 4700–4708. Available from: https://doi.org/10.1109/CVPR.2017.243
  23. Lin M, Chen Q, Yan S. Network in network. 2013. Available from: https://doi.org/10.48550/arXiv.1312.4400
  24. KRK, Jain S. Recent Advances in Machine Learning for Diagnosis of Lung Disease: A Broad View. 2022 IEEE Delhi Section Conference (DELCON). 2022;p. 1–9. Available from: https://doi.org./10.1109/DELCON54057.2022.9753275


© 2022 Agrawal et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.