• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 1, Pages: 28-43

Original Article

ETX-Aware Energy-Efficient Algorithm to Reduce Packet Retransmissions in the Internet of Things

Received Date:10 December 2021, Accepted Date:30 December 2021, Published Date:21 January 2022


Objectives: An energy-efficient optimum path selection to reduce the number of packet retransmissions in a path is proposed in this paper using a new metric New-Expected Transmission Count (N-ETX), Residual Energy (RE), and Path Objective Function (POF). Methods: Energy efficiency, packet retransmission, and RE is considered while making the best choice of the optimum path. The refined N-ETX metric is employed to measure the Packet Delivery Ratio (PDR) of a node. If the PDR ratio is higher, this node is included in the optimum path set. The proposed algorithm avoids the inclusion of critical nodes such as dead nodes if the RE of the nodes is lower than the predefined Energy Threshold (ETHR). The Unicast message reply to strategy significantly decreases the quantity of control message overhead. The T-test’s Degree of Variance and Degree of Independence is used to discover the energy-efficient optimum path. It is demonstrated through performance outcomes that the obtained Quality of Service (QoS) parameters for the proposed algorithm stands superior to the state-of-art protocols. Findings: An algorithm established on N-ETX and RE metrics is proposed, and the discussions have shown that this approach is energy efficient. This metric decreases the quantity of packet retransmission effectively for a path. As an outcome, the sensor’s higher energy consumption is reduced. The proposed algorithm outperforms the current algorithm by decreasing energy consumption, reducing the quantity of packet retransmission, improving the PDR ratio, and enhancing the network life expectancy. The simulation outcome established that energy consumed is decreased by 19.07%, RE of the nodes is increased by 10.51%, PDR ratio is increased to 98%, and network lifespan is increased by 30.54%. Novelty: Internet of Things (IoT) gadgets are bound by hardware limits regarding computation, memory, and energy proficiency. To effectively transmit data packets, every IoT device must have a routing communications protocol that is easy to create. IoT devices necessitate the demand for self-adaptive routing algorithms. During network operation, packet energy dissipation during the broadcast and reception process is significantly higher when assessed to otherenergy-consuming processes like sensing, data processing, etc.

Keywords: LOADng; Energy Efficiency; ETX; Packet Retransmission; Residual Energy


  1. Arul R, Alroobaea R, Mechti S, Rubaiee S, Andejany M, Tariq U, et al. Intelligent data analytics in energy optimization for the internet of underwater things. Soft Computing. 2021;25(18):12507–12519. Available from: https://dx.doi.org/10.1007/s00500-021-06002-x
  2. Biradar M, Mathapathi B. Secure, Reliable and Energy Efficient Routing in WSN: A Systematic Literature Survey. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). 2021. Available from: https://doi.org/10.1109/icaect49130.2021.9392561
  3. Zanaj E, Caso G, Nardis LD, Mohammadpour A, Alay Ö, Benedetto MGD. Energy Efficiency in Short and Wide-Area IoT Technologies—A Survey. Technologies. 2021;9(1):22. Available from: https://dx.doi.org/10.3390/technologies9010022
  4. Khan MZ, Alhazmi OH, Javed MA, Ghandorh H, Aloufi KS. Reliable Internet of Things: Challenges and Future Trends. Electronics. 2021;10(19):2377. Available from: https://dx.doi.org/10.3390/electronics10192377
  5. Mutombo VK, Lee S, Lee J, Hong J. EER-RL: Energy-Efficient Routing Based on Reinforcement Learning. Mobile Information Systems. 2021;2021:1–12. Available from: https://doi.org/10.1155/2021/5589145
  6. Nayagi DS, G SG, Ravi V, R VK, Sennan S. REERS: Reliable and energy‐efficient route selection algorithm for heterogeneous Internet of things applications. International Journal of Communication Systems. 2021;34(13). Available from: https://dx.doi.org/10.1002/dac.4900
  7. Zhang S, You X, Zhang P, Huang M, Li S. A UCB-based dynamic CoAP mode selection algorithm in distribution IoT. Alexandria Engineering Journal. 2022;61(1):719–727. Available from: https://dx.doi.org/10.1016/j.aej.2021.04.101
  8. Zikria YB, Afzal MK, Ishmanov F, Kim SW, Yu H. A survey on routing protocols supported by the Contiki Internet of things operating system. Future Generation Computer Systems. 2018;82:200–219. Available from: https://dx.doi.org/10.1016/j.future.2017.12.045
  9. Sobral JVV, Rodrigues JJPC, Rabelo RAL, Saleem K, Kozlov SA. Improving the Performance of LOADng Routing Protocol in Mobile IoT Scenarios. IEEE Access. 2019;7:107032–107046. Available from: https://dx.doi.org/10.1109/access.2019.2932718
  10. Sobral JVV, Rodrigues JJPC, Rabêlo RAL, Saleem K, Furtado V. LOADng-IoT: An Enhanced Routing Protocol for Internet of Things Applications over Low Power Networks. Sensors. 2019;19(1):150. Available from: https://dx.doi.org/10.3390/s19010150
  11. Halepoto IA, Khan UA, Arain AA. Retransmission Policies for Efficient Communication in IoT Applications. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). 2018. Available from: https://doi.org/10.1109/ficloud.2018.00036
  12. Zhang X, Qi H, Zhang X, Han L. Energy-Efficient Resource Allocation and Data Transmission of Cell-Free Internet of Things. IEEE Internet of Things Journal. 2021;8(20):15107–15116. Available from: https://dx.doi.org/10.1109/jiot.2020.3030675
  13. Ansere JA, Han G, Bonsu KA, Peng Y. Energy-Efficient Joint Power Allocation and User Selection Algorithm for Data Transmission in Internet-of-Things Networks. IEEE Internet of Things Journal. 2020;7(9):8736–8747. Available from: https://dx.doi.org/10.1109/jiot.2020.2995387
  14. Fathy Y, Barnaghi P. Quality-Based and Energy-Efficient Data Communication for the Internet of Things Networks. IEEE Internet of Things Journal. 2019;6(6):10318–10331. Available from: https://dx.doi.org/10.1109/jiot.2019.2938101
  15. Izaddoost A, Siewierski M. Energy Efficient Data Transmission in IoT Platforms. Procedia Computer Science. 2020;175:387–394. Available from: https://dx.doi.org/10.1016/j.procs.2020.07.055
  16. Khan RA, Xin Q, Roshan N. RK-Energy Efficient Routing Protocol for Wireless Body Area Sensor Networks. Wireless Personal Communications. 2021;116(1):709–721. Available from: https://dx.doi.org/10.1007/s11277-020-07734-z
  17. Ahad A, Tahir M, Sheikh MA, Ahmed KI, Mughees A, Numani A. Technologies Trend towards 5G Network for Smart Health-Care Using IoT: A Review. Sensors. 2020;20(14):4047. Available from: https://dx.doi.org/10.3390/s20144047
  18. Anjos JCSD, Gross JLG, Matteussi KJ, González GV, Leithardt VRQ, Geyer CFR. An Algorithm to Minimize Energy Consumption and Elapsed Time for IoT Workloads in a Hybrid Architecture. Sensors. 2021;21(9):2914. Available from: https://dx.doi.org/10.3390/s21092914
  19. Nivedhitha V, Saminathan AG, Thirumurugan P. DMEERP: A dynamic multi-hop energy efficient routing protocol for WSN. Microprocessors and Microsystems. 2020;79:103291. Available from: https://dx.doi.org/10.1016/j.micpro.2020.103291
  20. Sujanthi S, Kalyani SN. SecDL: QoS-Aware Secure Deep Learning Approach for Dynamic Cluster-Based Routing in WSN Assisted IoT. Wireless Personal Communications. 2020;114(3):2135–2169. Available from: https://dx.doi.org/10.1007/s11277-020-07469-x


© 2022 Newton & Felix. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.