• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 37, Pages: 3871-3883

Original Article

Exergy and economic assessments of an organic rankine cycle module designed for heat recovery in commercial truck engines

Received Date:11 August 2020, Accepted Date:25 September 2020, Published Date:13 October 2020

Abstract

Objectives: To evaluate the energy and exergy performances of a designed ORC system and to quantify loses within the system and measure its output.The study also assesses the economic performance of the ORC system to determine the feasibility of the business. Methods: Thermodynamic analysis assessing the energy performance and cost estimation using manufacturers’ prices to generate generic equations for estimating costs of the components of the designed ORC system. Findings: The results of the exergy evaluation of the ORC show a system thermal efficiency of 6.39%, net power output of 3.10kWe, exergy destruction of 9.07kW, and exergy efficiency of 54.6%. The economic estimation has a capital investment cost of £8,381.98, a specific investment cost of £2,754.36/kWe, annual savings of £1,233.34, and a payback period of 6.8years. Novelty: The use of exergetic method of analysis and the assessment of the potential economic benefits of installing the module in commercial trucks which form part of the acceptance-criteria, using prevailing market prices of the ORC system is an obvious novelty in this study. In addition, the generation and use of curve-fitting plots to obtain the generic equations for computing the approximate costs of the individual components of the system is an integral part of the novelty of this work.

Keywords: Organic Rankine cycle; exergy and economic assessment; specific investment cost; capital investment cost; payback period; exhaust heat recovery

References

  1. Thaddaeus J, Pesiridis A, Karvountzis-Kontakiotis A. Design of variable geometry waste heat recovery turbine for high efficiency internal combustion engine. Int. J. Sci. Eng. Res. 2016;7:1001–1017. Available from: https://bura.brunel.ac.uk/bitstream/2438/13960/1/Fulltext.pdf
  2. Alshammari F, Pesyridis A, Karvountzis-Kontakiotis A, Franchetti B, Pesmazoglou Y. Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance. Applied Energy. 2018;215:543–555. Available from: https://dx.doi.org/10.1016/j.apenergy.2018.01.049
  3. Little BA, Garimella S. Comparative assessment of alternative cycles for waste heat recovery and upgrade. In: Energy. (Vol. 36, pp. 4492-4504) Energy. Elsevier BV. 2011.
  4. Imran M, Park BS, Kim HJ, Lee DH, Usman M, Heo M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Conversion and Management. 2014;87:107–118. Available from: https://dx.doi.org/10.1016/j.enconman.2014.06.091
  5. Alshammari F, Karvountzis-Kontakiotis A, Pesiridis A, Minton T. Radial expander design for an engine organic rankine cycle waste heat recovery system. Energy Procedia. 2017;129:285–292. Available from: https://dx.doi.org/10.1016/j.egypro.2017.09.155
  6. Thaddaeus J, Unachukwu G, Mgbemene C, Mohammed A, Pesyridis A. Overview of recent developments and the future of organic Rankine cycle applications for exhaust energy recovery in highway truck engines. International Journal of Green Energy. . Available from: https://doi.org/10.1080/15435075.2020.1818247
  7. National Renewable Energy Laboratory Fleet DNA Project Data. Available from: www.nrel.gov/fleetdna (accessed )
  8. Casas Y, Arteaga LE, Morales M, Rosa E, Peralta LM, Dewulf J. Energy and exergy analysis of an ethanol fueled solid oxide fuel cell power plant. Chemical Engineering Journal. 2010;162(3):1057–1066. Available from: https://dx.doi.org/10.1016/j.cej.2010.06.021
  9. Meramo-Hurtado S, Ojeda-Delgado K, Tuirán ES. Exergy analysis of bioethanol production from rice residues. Contemporary Engineering Sciences. 2018;11. Available from: https://doi.org/10.12988/ces.2018.8234
  10. Imran M, Usman M, Lee D, Park B. Thermoeconomic Analysis of rganic Rankine Cycle using Zeotropic Mixtures * Corresponding Author : Byung-Sik Park. Proc. 3rd Int. Semin. ORC Power Syst. 2015;p. 1–11.
  11. Cipollone R, Battista DD, Bettoja F. Performances of an ORC power unit for Waste Heat Recovery on Heavy Duty Engine. Energy Procedia. 2017;129:770–777. Available from: https://dx.doi.org/10.1016/j.egypro.2017.09.132
  12. Gear Pumps catalogue. Available from: http://allpumps.co.uk/pumps/gear-pumps (accessed )
  13. Ghoreishi SMS, Vakilabadi MA, Bidi M, Poorfar AK, Sadeghzadeh M, Ahmadi MH, et al. Analysis, economical and technical enhancement of an organic Rankine cycle recovering waste heat from an exhaust gas stream. Energy Science & Engineering. 2019;7(1):230–254. Available from: https://dx.doi.org/10.1002/ese3.274
  14. Electricity Rates in the UK. Available from: https://www.ukpower.co.uk/home_energy (accessed )
  15. Li X, Song J, Yu G, Liang Y, Tian H, Shu G, et al. Organic rankine cycle systems for engine waste-heat recovery: Heat exchanger design in space-constrained applications. Energy Conversion and Management. 2019;199:111968. Available from: https://dx.doi.org/10.1016/j.enconman.2019.111968

Copyright

© 2020 Thaddaeus et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).

DON'T MISS OUT!

Subscribe now for latest articles and news.