• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 29, Pages: 2981-3001

Original Article

Extra-tree learning based Socio-economic factor analysis and multi-class adaptive boosting meta-estimator for prediction of agricultural productivity

Received Date:07 June 2020, Accepted Date:05 July 2020, Published Date:11 August 2020

Abstract

Background/Objectives: In socio-economic factor analysis, the observed data are essential in the random distribution for the adequate representation of the random components associated with various factors and lead to poor prediction in the case of the Logit and Probit model. The objective of this work is to have machine learning based model for socio-economic factors analysis and ensemble learning based model for efficient prediction of agricultural productivity. Methods: In this work, extra-tree classifier machine learning model based socio-economic factors selection has been used and found capable to evaluate the socio-economic factors that contain relevant information to the target variable agricultural productivity. In addition to this, the multi-class adaptive boosting ensemble learning approach is used for the prediction of agricultural productivity of respondents (farmers) from their socio-economic profiles. This proposed research has been evaluated by using the test case of analyzing the socio-economic factors of the farmers affecting agricultural productivity in Sambalpur District, of Odisha State, India.The farmers’ socio-economic data are collected by using structured interviews through questionnaires that are in line with standard Participatory Rural Appraisal. Findings: It is found that the proposed approach of socio-economic factor identification is efficient for computing the relationships between socioeconomic factors and agricultural productivity. Novelty: In this application domain of socio-economic factor analysis, the proposed method employs extra-tree classifier and boosting ensemble learning for socio-economic factor analysis towards agricultural productivity which is found efficient than other existing approaches such as Logit, Probit, Linear Regression, Linear Discriminant Analysis, Naïve Baise, and other counterparts.

Keywords: Socio-economic factor analysis; multiclass adaptive boosting; ensemble learning; extra-tree classifier; Probit; Logit

References

  1. Kent TJ. Information gain and a general measure of correlation. Biometrika. 1983;70(1):163–173. Available from: https://dx.doi.org/10.1093/biomet/70.1.163
  2. Lerman IR, Yitzhaki S. A note on the calculation and interpretation of the Gini index. Economics Letters. 1984;15(3-4):363–368. Available from: https://dx.doi.org/10.1016/0165-1765(84)90126-5
  3. Fusi A, González-García S, Moreira MT, Fiala M, Bacenetti J. Rice fertilised with urban sewage sludge and possible mitigation strategies: an environmental assessment. Journal of Cleaner Production. 2017;140:914–923. Available from: https://dx.doi.org/10.1016/j.jclepro.2016.04.089
  4. Wassmann R, Jagadish SV, Sumfleth K, Pathak H, Howell G, Ismail A, et al. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Advances in agronomy. 2009;102:91–133. Available from: https://doi.org/10.1016/S0065-2113(09)01003-7
  5. Masutomi Y, Takahashi K, Harasawa H, Matsuoka Y. Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agriculture, Ecosystems & Environment. 2009;131:281–291. Available from: https://dx.doi.org/10.1016/j.agee.2009.02.004
  6. Nkonya E, Schroeder T, Norman D. Factors affecting adoption of improved maize seed and fertiliser in Northern Tanzania. Journal of Agricultural Economics. 1997;48(1-3):1–12. Available from: https://dx.doi.org/10.1111/j.1477-9552.1997.tb01126.x
  7. Gómez-Limón JA, Riesgo L, Arriaza M. Multi-Criteria Analysis of Input Use in Agriculture. Journal of Agricultural Economics. 2004;55(3):541–564. Available from: https://dx.doi.org/10.1111/j.1477-9552.2004.tb00114.x
  8. Yuguda RM, Girie AA, Dire B, Salihu M. Socio-economic factors and constraints influencing productivity among Cassava farmers in Taraba state Nigeria. International Journal of Advances in Agricultural Science and Technology. 2013;1(1):1–15.
  9. Ajah J, Nmadu JN. Socio-economic factors influencing the output of small-scale maize farmers in. Kasetsart Journal of Social Sciences. 2012;33(2):333–341.
  10. Masuku MB, Xaba B. Factors Affecting the Productivity and Profitability of Vegetables Production in Swaziland. Journal of Agricultural Studies. 2013;1(2):37. Available from: https://dx.doi.org/10.5296/jas.v1i2.3748
  11. Zalkuwi J. Socio-economic factors that affect Sorghum production in Adamawa State. Nigeria. International Journal of Science and Research (IJSR). 2015;4(2):1610–1614. Available from: https://www.ijsr.net/search_index_results_paperid.php?id=SUB151542
  12. U EGW, Williams E. Factors affecting sustainable agricultural productivity in Ebonyi State, Nigeria. Global Journal of Agricultural Economics, Extension and Rural Development. 2015;21(30):183–187.
  13. Anigbogu TU, Agbasi OE, Okoli IM. Socioeconomic Factors Influencing Agricultural Production among Cooperative Farmers in Anambra State, Nigeria. International Journal of Academic Research in Economics and Management Sciences. 2015;4(3):43–58. Available from: https://dx.doi.org/10.6007/ijarems/v4-i3/1876
  14. Jiriko RK. Socio-economic factors affecting the performance of women in food production. Global J Agr Res. 2015;3(2):37–45.
  15. Chambers R. The origins and practice of participatory rural appraisal. World Development. 1994;22(7):953–969. Available from: https://dx.doi.org/10.1016/0305-750x(94)90141-4
  16. Chambers R. Participatory rural appraisal (PRA): Analysis of experience. World development. 1994;22(9):1253–1268. doi: 10.1093/nar/22.2.124
  17. Chambers R. Participatory rural appraisal (PRA): Challenges, potentials and paradigm. World Development. 1994;22(10):1437–1454. Available from: https://doi.org/10.1016/0305-750X(94)90030-2
  18. Dougill AJ, Fraser EDG, Holden J, Hubacek K, Prell C, Reed MS, et al. Learning from Doing Participatory Rural Research: Lessons from the Peak District National Park. Journal of Agricultural Economics. 2006;57(2):259–275. Available from: https://dx.doi.org/10.1111/j.1477-9552.2006.00051.x
  19. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. The Journal of machine Learning research. 2011;12:2825–2855. Available from: http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
  20. Zhu J, Rosset S, Zou H, Hastie T. Multi-class AdaBoost. Statistics and Its Interface. 2009;2(3):349–360. Available from: https://dx.doi.org/10.4310/sii.2009.v2.n3.a8
  21. Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics. 1991;21(3):660–674. Available from: https://dx.doi.org/10.1109/21.97458
  22. Bhatia N. Survey of Nearest Neighbor Techniques. Computer Vision and Pattern Recognition. 2010;8(2):302–305. Available from: https://arxiv.org/abs/1007.0085
  23. Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: A survey and results of new tests. Pattern Recognition. 2011;44:330–349. Available from: https://dx.doi.org/10.1016/j.patcog.2010.08.011
  24. Erenguc SS, Koehler GJ. Survey of mathematical programming models and experimental results for linear discriminant analysis. Managerial and Decision Economics. 1990;11(4):215–225. Available from: https://dx.doi.org/10.1002/mde.4090110403
  25. Zanutto EL. A comparison of propensity score and linear regression analysis of complex survey data. Journal of data Science. 2006;4(1):67–91.
  26. Tharwat A. Linear vs. quadratic discriminant analysis classifier: a tutorial. International Journal of Applied Pattern Recognition. 2016;3(2):145. Available from: https://dx.doi.org/10.1504/ijapr.2016.079050
  27. Clémençon S, Bertail P, Chautru E, Papa G. Survey schemes for stochastic gradient descent with applications to m-estimation. Machine Learning. 2015. Available from: https://arxiv.org/abs/1501.02218

Copyright

© 2020 Naik et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).

DON'T MISS OUT!

Subscribe now for latest articles and news.