• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 29, Pages: 2167-2175

Original Article

Failure Rate Analysis of Full Bridge DC/DC Converter in Hard and Soft Switching Control Schemes

Received Date:27 January 2023, Accepted Date:23 June 2023, Published Date:28 July 2023

Abstract

Objectives: To calculate the failure rate of full bridge DC/DC converter for both hard and soft switching control schemes. Method: The analysis is done at same power level and same operating frequency. A 500 W photovoltaic system is simulated for experimentation on failure rate assessment of full bridge DC/DC converter with hard and soft switching control schemes. The individual component failure rates in hard switching control scheme and soft switching control scheme are calculated. Military handbook MIL-HDBK 217F is used to calculate the individual component failure rate. Then MTBF rates for both switching schemes is computed and compared. Findings: Reliability calculations are done for same input power and operating frequency of 10 KHz. Results have shown that semiconductor power switches, diodes and capacitor undergoes high stress in hard switching control scheme compared with soft switching scheme. The total failure rate for hard switched control scheme is 7.7910 while for soft switched control scheme total failure rate is 6.2715. The MTBF for hard control scheme is 128353.22 while for soft switched control scheme MTBF is 159451.48. Soft switched control schemes exhibited 81.92 % decrement in failure rate for IGBT, 68.16 % decrement for diodes and 50% decrement for capacitors. For transformer and inductor same failure rates are observed in both control schemes. This showed that soft switching control scheme offers lower failure rate and better reliability than hard switched control scheme. Novelty: This study has compared and calculated reliabilities for two different control schemes viz. hard switched and soft switched control schemes on same circuit platform. Individual component stress levels are computed for both control schemes and it is proved that stress on individual semiconductor components is lower in soft switched control scheme than in hard switched control scheme.

Keywords: Full Bridge DC/DC Converter Reliability; Soft and Hard Switching; Part Stress Method; Failure Rate Calculations; Converter Reliability Prediction

References

  1. Yang S, Bryant A, Mawby P, Xiang D, Ran L, Tavner P. An industry based survey of reliability in power electronic converters. IEEE transactions on Industry Applications. 2011;47(3):1441–1451. Available from: https://doi.org/10.1109/TIA.2011.2124436
  2. Song Y, Wang B. Survey on Reliability of Power Electronic Systems. IEEE Transactions on Power Electronics. 2013;28(1):591–604. Available from: https://doi.org/10.1109/TPEL.2012.2192503
  3. Petrone G, Spagnuolo G, Teodorescu R, Veerachary M, Vitelli M. Reliability Issues in Photovoltaic Power Processing Systems. IEEE Transactions on Industrial Electronics. 2008;55(7):2569–2580. Available from: https://doi.org/10.1109/TIE.2008.924016
  4. Wang H, Ma K, Blaabjerg F. Design for reliability of power electronic systems. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society. 2012;p. 33–44. Available from: https://doi.org/10.1109/IECON.2012.6388833
  5. Pecht M, Dasgupta A. Physics-of-failure: an approach to reliable product development. IEEE 1995 International Integrated Reliability Workshop. Final Report. 1995;p. 1–4. Available from: https://doi.org/10.1109/IRWS.1995.493566
  6. Lu B, Sharma S. A Literature Review of IGBT Fault Diagnostic and Protection Methods for Power Inverters. 2008 IEEE Industry Applications Society Annual Meeting. 2008;45:1770–1777. Available from: https://doi.org/10.1109/08IAS.2008.349
  7. Dhople SV, Davoudi A, Chapman PL, Dominguez-Garcia AD. Reliability assessment of fault-tolerant Dc-Dc converters for photovoltaic applications. 2009 IEEE Energy Conversion Congress and Exposition. 2009;p. 2271–2276. Available from: https://doi.org/10.1109/ECCE.2009.5316414
  8. Abdi B, Ranjbar AH, Gharehpetian GB, Milimonfared J. Reliability Considerations for Parallel Performance of Semiconductor Switches in High-Power Switching Power Supplies. IEEE Transactions on Industrial Electronics. 2009;56(6):2133–2139. Available from: https://doi.org/10.1109/TIE.2009.2014306
  9. Kumar A, Praveen A, Gulam, Rao S, Srinivasa. Reliability estimation of power factor correction circuits. Asian power electronics journal. 2009;3(1):30–38. Available from: http://perc.polyu.edu.hk/APEJ/APEJ/Volume3/paper05.pdf
  10. Chavan SB, Chavan MB. A model based approach for fault diagnosis in converter of photovoltaic systems. 2014 IEEE Global Conference on Wireless Computing & Networking (GCWCN). 2014;p. 112–115. Available from: https://doi.org/10.1109/GCWCN.2014.7030859
  11. Ambusaidi K, Pickert V, Zahawi B. New Circuit Topology for Fault Tolerant H-Bridge DC–DC Converter. IEEE Transactions on Power Electronics. 2010;25(6):1509–1516. Available from: https://doi.org/10.1109/TPEL.2009.2038217
  12. Ribeiro E, Cardoso AJM, Boccaletti C. Fault-Tolerant Strategy for a Photovoltaic DC--DC Converter. IEEE Transactions on Power Electronics. 2013;28(6):3008–3018. Available from: https://doi.org/10.1109/TPEL.2012.2226059
  13. Pei X, Nie S, Chen Y, Kang Y. Open-Circuit Fault Diagnosis and Fault-Tolerant Strategies for Full-Bridge DC–DC Converters. IEEE Transactions on Power Electronics. 2012;27(5):2550–2565. Available from: https://doi.org/10.1109/TPEL.2011.2173589
  14. Tarzamni H, Babaei E, Esmaeelnia FP, Dehghanian P, Tohidi S, Sharifian MBB. Analysis and Reliability Evaluation of a High Step-Up Soft Switching Push–Pull DC–DC Converter. IEEE Transactions on Reliability. 2020;69(4):1376–1386. Available from: https://doi.org/10.1109/TR.2019.2945413
  15. Jagadeesh I, Indragandhi V. Comparative Study of DC-DC Converters for Solar PV with Microgrid Applications. Energies. 2022;15(20):7569. Available from: https://doi.org/10.3390/en15207569
  16. Taghavi SS, Rezvanyvardom M, Mirzaei A, Gorji A, High S, Step. High Step-Up Three-Level Soft Switching DC-DC Converter for Photovoltaic Generation Systems. Energies. 2023. Available from: https://doi.org/10.3390/en16010041
  17. Sayed K, Gronfula MG, Ziedan HA. Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System. Energies. 2020;13(3):749. Available from: https://doi.org/10.3390/en13030749
  18. Soomro JB, Akhtar F, Hussain R, Ansari JA, Muni HM. A detailed review of MMC circuit topologies and modelling issues. 2022. Available from: https://doi.org/10.1155/2022/8734010
  19. Sujatha M, Muthusamy M, Parvathy AK. Reliability analysis of converter using Markov approach. AIP Conference proceedings. 2022;2519. Available from: https://doi.org/10.1063/5.0120112
  20. Muktiadji AMRF, Rushdi. Reliability Analysis of Boost Converters Connected to a Solar Panel Using a Markov Approach. Journal of Energy Research and Reviews. 2021;7(1):29–42. Available from: https://doi.org/10.9734/JENRR/2021/v7i130182
  21. Liu Q, Xu G, Li Z, Jia Z, Gao Y, Li Y, et al. Reliability Analysis of a Three-Port Converter with a Semi-Regulated Bus Voltage Structure with an MPPT Function for Near-Space Vehicles. Journal of Electrical Engineering & Technology. 2023;18(3):1719–1731. Available from: https://doi.org/10.1007/s42835-022-01319-5
  22. Bairabathina S, Subramani B. Design, prototype validation, and reliability analysis of a multi‐input DC/DC converter for grid‐independent hybrid electric vehicles. International Journal of Circuit Theory and Applications. 2023;51(5):2375–2405. Available from: https://doi.org/10.1002/cta.3533
  23. Darla RB, Annamalai C. A novel reliability prediction with input transients for an LLC converter. Frontiers in Energy Research. 2022;10:1–15. Available from: https://doi.org/10.3389/fenrg.2022.912710
  24. Zandi O, Poshtan J. Voltage control of DC–DC converters through direct control of power switches using reinforcement learning. Engineering Applications of Artificial Intelligence. 2023;120:105833. Available from: https://doi.org/10.1016/j.engappai.2023.105833

Copyright

© 2023 Chavan & Chavan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.