• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 27, Pages: 2820-2828

Original Article

Flow Properties o f Tannery Waste Liquor

Received Date:03 January 2024, Accepted Date:01 June 2024, Published Date:13 July 2024

Abstract

Objective: A water treatment facility is to be erected nearby the industrial tanning complex, recently established East of Cairo, Egypt. This paper represents a contribution to studying the flow characteristics of the produced tannery waste effluents. A dried sample of tannery waste was chemically analyzed by X-ray fluorescence and its particle size distribution was determined. Next, rheological measurements were carried out on the waste slurry produced at temperatures ranging from 10°C to 40°C and three different solid concentrations, by weight: 20%, 25%, and 30%. The results showed that all waste suspensions under all conditions of solid content and temperature behaved as shear-thinning liquids. Flow indices of all suspensions generally tended to increase with temperature and solid concentration. Activation energies for viscosity were correlated to an increase in solid concentration and showed a decreasing pattern. All samples exhibited a thixotropic character that decreased with increased temperature and dilution of the suspension. The maximum pressure drops per unit length of a pipeline used to transport the waste suspension to the treatment unit was evaluated and found to increase with solid concentration and decrease with increasing temperature.

Keywords: Rheology, Tannery waste slurry, Solid content, Temperature

References

  1. Appiah-Brempong M, Essandoh H, Asiedu NY, Dadzie SK, Momade F. Artisanal tannery wastewater: quantity and characteristics. Heliyon. 2022;8(1). Available from: https://doi.org/10.1016/j.heliyon.2021.e08680
  2. Sunmathi N, Padmapriya R, Sudarsan JS, Nithiyanantham S. Optimum utilization and resource recovery of tannery sludge: A review. Int J Environ Sci Technol. 2023;20(9):10405–10414. Available from: https://doi.org/10.1007/s13762-022-04483-3
  3. Rigueto C, Rosseto M, Krein D, Ostwald B, Massuda LA, Zanella BB, et al. Alternative uses for tannery wastes: a review of environmental, sustainability, and science. J Leather Sci Eng. 2020;2(21). Available from: https://doi.org/10.1186/s42825-020-00034-z
  4. Tapia N, Moina HB. Exploring tannery solid wastes as a source of animal feed. Processes. 2023;11(10):2965. Available from: https://doi.org/10.3390/pr11102965
  5. Shk A, Ashmawy N, Abadir MF. The use of tannery waste in the preparation of clay roof tiles. Const Build Mater. 2022;325:126393. Available from: https://doi.org/10.1016/j.conbuildmat.2022.126393
  6. Ghanaatpishehsanaei G, Rajinder P. Rheology of suspensions of solid particles in liquids thickened by starch nanoparticles. Colloids Interface. 2023;7(3):52. Available from: https://doi.org/10.3390/colloids7030052
  7. Papadopoulou A, Gillissen JJ, Wilson HJ, Tiwari MK, Balabani S. On the shear thinning of non-Brownian suspensions. J Non-Newtonian Fluid Mech. 2020;28. Available from: https://doi.org/10.1016/j.jnnfm.2020.104298
  8. Trofa M, Avino D, G. Rheology of a dilute suspension of aggregates in shear-thinning fluids. Micromachines. 2020;11(4):443–451. Available from: https://doi.org/10.3390/mi11040443
  9. Burlawar S, Klingenberg DJ, Root TW, Scott CT, Houtman CJ, Bourne KJ. Effect of temperature on the rheology of concentrated suspensions containing lignocellulosic biomass particles. Biomass Bioenergy. 2022;156:106298. Available from: https://doi.org/10.1016/j.biombioe.2021.106298
  10. Nguyen TC, Fillaudeau L, AA, Chu-Ky D, Luong S, Vu HN, et al. Impact of particle size on the rheological properties and amylolysis kinetics of ungelatinized cassava flour suspensions. Processes. 2021;9(6):989. Available from: https://doi.org/10.3390/pr9060989
  11. Luckham PF, Ukeje MA. Effect of particle size distribution on the rheology of dispersed systems. J Colloid Interface Sci. 1999;220(2):347–356. Available from: https://doi.org/10.1006/jcis.1999.6515
  12. Ganesan V, Muthulakshmi B. Study on rheology and optimization for treating tannery effluents in submerged aerobic membrane bioreactor. Int J Innov Eng Tech. 2015;6(2):53–60. Available from: https://rb.gy/1hsuvq
  13. Cruz N, Forster J, Bobicki ER. Slurry rheology in mineral processing unit operations: A critical review. Can J Chem Eng. 2019;97:2102–2120. Available from: https://doi.org/10.1002/cjce.23476
  14. Cayeux E, Leulseged A. The Effect of Thixotropy on Pressure Losses in a Pipe. Energies. 2020;13(23):6165. Available from: https://dx.doi.org/10.3390/en13236165
  15. Wei Y, Solomon MJ, Larson RG. Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows. Journal of Rheology. 2016;60(6):1301–1315. Available from: https://dx.doi.org/10.1122/1.4965228
  16. Chabra RP, Richardson J. Non-Newtonian Flow in the Process Industries. Butterworth - Heinemann Ed. 1999;p. 74–76. Available from: https://doi.org/10.1016/B978-0-7506-3770-1.X5000-3

Copyright

© 2024 Ghaly et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.