• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 15, Pages: 1135-1144

Original Article

Free Radical Scavenging and Cytotoxicity of Dimocarpus Longan Leaves Mediated Silver Nanoflakes

Received Date:12 January 2023, Accepted Date:26 February 2023, Published Date:18 April 2023

Abstract

Objectives: To study the antioxidant and cytotoxicity of biologically synthesised silver nanoflakes using Dimocarpus longan (D. longan) leaf extract. Method: 1mM Silver nitrate is treated with 20 ml of D. longan leaves extract for 1 hour. The phytochemicals like phenols, alkaloids and flavonoids present in the aqueous leaf extract act as a reducing and stabilizing agent which reduces the silver nitrate into silver nanoflakes. Findings: The silver nanoflakes show characteristics of surface plasmon resonance at 450 nm in UV-vis spectroscopy. The FT-IR spectrum confirmed the phytoconstituent present in the leaves extracts. The XRD analysis shows the nature of silver nanoflakes. The size and stability were determined using dynamic light scattering (DLS) the values are 87.17 nm and -23 mv. The scanning electron microscope shows a poly-dispersed flake-like structure. It exhibits comparable antioxidant activity with ascorbic acid using DPPH (1, 1-diphenyl-2-picryl hydrazyl) assay and the (IC50) value was approximately 65.5 mgml-1. The remarkable cytotoxicity effect of synthesized silver nanoflakes against MDA-MB-231 and MCF-7 breast cancer cell lines is evidenced by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The Inhibitory concentration (IC-50) values examined were 138.62.18 mgml-1 and 171.52.2 mgml-1. Novelty: For the first time, the present study revealed the synthesis of silver nanoflakes of lower size using leaves extract of D. longan which was employed for its antioxidant activity and also for in vitro cytotoxic effects against breast cancer cells MDA-MB-231 and MCF-7. Keywords: Silver nanoflakes; D longan leaf; antioxidants; MTT assay and Cytotoxicity

References

  1. Murad U, Khan SA, Ibrar M, Ullah S, Khattak U. Synthesis of silver and gold nanoparticles from leaf of Litchi chinensis and its biological activities. Asian Pacific Journal of Tropical Biomedicine. 2018;8(3):142. Available from: https://doi.org/10.4103/2221-1691.227995
  2. Gudikandula K, Maringanti SC. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience. 2016;11(9):714–721. Available from: https://doi.org/10.1080/17458080.2016.1139196
  3. Shetty AK, Udasimath SF, C.M K, A.M K, Akshara A. Evaluation Of Skeletal Muscle Relaxant Activity Of Ethanol Extract Of Chromoleana Odorata. IOSR Journal of Pharmacy (IOSRPHR). 2017;07(03):92–95. Available from: http://www.iosrphr.org/papers/v7i3V1/H0703019295.pdf
  4. Junejo Y, Safdar M, Akhtar MA, Saravanan M, Anwar H, Babar M, et al. Synthesis of Tobramycin Stabilized Silver Nanoparticles and Its Catalytic and Antibacterial Activity Against Pathogenic Bacteria. Journal of Inorganic and Organometallic Polymers and Materials. 2019;29(1):111–120. Available from: https://doi.org/10.1007/s10904-018-0971-z
  5. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International journal of environmental research and public health. 2013;10(10):5221–5259. Available from: https://doi.org/10.1007/s10904-018-0971-z
  6. Murugesan K, Koroth J, Srinivasan PP, Singh A, Mukundan S, Karki SS, et al. Effects of Green Synthesised Silver Nanoparticles (ST06-AgNPs) Using Curcumin Derivative (ST06) on Human Cervical Cancer Cells (HeLa) in vitro and EAC Tumor Bearing Mice Models [Retraction] International Journal of Nanomedicine. 2022;Volume 17:3077–3078. Available from: https://doi.org/10.2147/IJN.S381653
  7. Arokiyaraj S, Arasu MV, Vincent S, Oh YKK, Kim KH, Choi KCH, et al. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study. International Journal of Nanomedicine. 2014;(9) 379. Available from: https://doi.org/10.2147/IJN.S53546
  8. Gengan RM, Anand K, Phulukdaree A, Chuturgoon A. A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids and Surfaces B: Biointerfaces. 2013;105:87–91. Available from: https://doi.org/10.1016/j.colsurfb.2012.12.044
  9. Farah MA, Ali MA, Chen SMM, Li Y, Al-Hemaid FM, Abou-Tarboush FM, et al. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids and Surfaces B: Biointerfaces. 2016;141(141):158–169. Available from: https://doi.org/10.1016/j.colsurfb.2016.01.027
  10. Zia F, Ghafoor N, Iqbal M, Mehboob S. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Applied Nanoscience. 2016;6(7):1023–1029. Available from: https://doi.org/10.1007/s13204-016-0517-z
  11. Anwar S, Almatroodi A, Almatroudi S, Allemailem A, Joseph KS, Khan RJ, et al. Biosynthesis of silver nanoparticles using Tamarix articulata leaf extract: An effective approach for attenuation of oxidative stress mediated diseases. International Journal of Food Properties. 2021;24(1):677–701. Available from: https://doi.org/10. 1080/10942912.2021.1914083
  12. Moodley JS, Krishna SBN, Pillay K, Sershen, Govender P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2018;9(1):015011. Available from: https://doi.org/10.1088/2043-6254/aaabb2
  13. Liu Y, Liu L, Mo Y, Wei C, Lv L, Luo P. Antioxidant activity of longan (Dimocarpus longan) barks and leaves. African Journal of Biotechnology. 2012;11:7038–7045. Available from: https://doi.org/ 10.5897/AJB11.3297
  14. Khan MZ, Tareq FK, Hossen MA, Roki MN. Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract. Journal of Engineering Science and Technology. 2018;13(1):158–166. Available from: https://jestec.taylors.edu.my/Vol%2013%20issue%201%20January%202018/13_1_11.pdf
  15. Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, et al. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochemistry. 2012;47(2):273–279. Available from: https://doi.org/10.1016/j.procbio.2011.11.003
  16. Elbahnasawy MA, Shehabeldine AM, Khattab AM, Amin BH, Hashem AH. Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. Journal of Drug Delivery Science and Technology. 2021;62(1):102401. Available from: https://doi.org/10.1016/j.jddst.2021.102401
  17. Alheety MA, Al-Jibori SA, Ali AH, Mahmood AR, Akbaş H, Karadağ A, et al. Ag(I)-benzisothiazolinone complex: synthesis, characterization, H2 storage ability, nano transformation to different Ag nanostructures and Ag nanoflakes antimicrobial activity. Materials Research Express. 2019;6(12):125071. Available from: https://doi.org/0000-0002-1314-2150
  18. Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering. 2016;58:44–52. Available from: https://doi.org/10.1016/j.msec.2015.08.022
  19. Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022;27(4):1326. Available from: https://doi.org/10.3390/molecules27041326
  20. Gomathi AC, Rajarathinam SRX, Sadiq AM, Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology. 2020;55:101376. Available from: https://doi.org/10.1016/j.jddst.2019.101376
  21. Mohanta YK, Mishra AK, Nayak D, Patra B, Bratovcic A, Avula SK, et al. Exploring Dose-Dependent Cytotoxicity Profile of Gracilaria edulis-Mediated Green Synthesized Silver Nanoparticles against MDA-MB-231 Breast Carcinoma. Oxidative Medicine and Cellular Longevity. 2022;2022:1–15. Available from: https://doi.org/10.1049/iet-nbt.2015.0104
  22. Mohanta YK, Mishra AK, Nayak D, Patra B, Bratovcic A, Avula SK, et al. Exploring Dose-Dependent Cytotoxicity Profile of Gracilaria edulis-Mediated Green Synthesized Silver Nanoparticles against MDA-MB-231 Breast Carcinoma. Oxidative Medicine and Cellular Longevity. 2022;2022:1–15. Available from: https://doi.org/10.1155/2022/3863138

Copyright

© 2023 Sathiya & Kannappan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee

DON'T MISS OUT!

Subscribe now for latest articles and news.