• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 28, Pages: 1399-1405

Original Article

Growth of Cu2ZnSnS4 Thin Film Solar Cells Using Chemical Synthesis

Received Date:01 February 2022, Accepted Date:06 June 2022, Published Date:27 July 2022


Objectives: Cu2ZnSnS4 thin film solar cell is fabricated by using the chemical spray pyrolysis method. Method: CZTS thin films were successfully deposited by employing the eco-friendly and cost-effective chemical spray pyrolysis method. X-ray diffraction (XRD) and Raman spectroscopy are used to investigate the structural properties of the prepared samples. The surface morphology of the deposited films is studied using a scanning electron microscope. An energy dispersive spectrometer is used to know the chemical compositions of the deposited films. A double beam spectrophotometer is used to study the optical characteristics of these films. The hot probe technique is used to confirm the nature of the conductivity of the deposited films. Findings: The XRD spectra of the thin films reveal the polycrystalline nature with the kesterite structure of the thin films. The optical band gap is found to be 1.52 eV and the absorption coefficient value of these films is found to be  104 cm-1. The nature of conductivity is identified to be p-type. Finally, Cu2ZnSnS4 thin film solar cell is fabricated with the substrate configuration glass/Mo/CZTS/CdS/Ag which exhibited an open circuit voltage and short circuit current of 156 mV and 1.82 mA/cm2 respectively. Novelty: The growth of Cu2ZnSnS4 thin films is studied by varying the distance between the spray nozzle and glass substrate from 25 to 35 cm in steps of 5 cm and maintaining all other parameters as constant. Finally, the Cu2ZnSnS4 thin film solar cell is prepared in a substrate as well as a superstrate configuration.
Keywords: Thin films; Absorber layers; Spray technique; Solar cell; Cu2ZnSnS4


  1. Razykov TM, Ferekides CS, Morel D, Stefanakos E, Ullal HS, Upadhyaya HM. Solar photovoltaic electricity: Current status and future prospects. Solar Energy. 2011;p. 1580–1608.
  2. Takuya K, Wu J, Yoshiaki H, Hiroki S, Veronica B. Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2. IEEE Journal of Photovoltaics. 2018;9:325–330. Available from: https://doi.org/10.1109/JPHOTOV.2018.2882206
  3. Jayasree Y, Kumar YBK, Babu GS, Bhaskar PU. Growth of Cu2ZnSnS4 thin films by hybrid chemical approach. Physica B: Condensed Matter. 2021;618:413199. Available from: https://doi.org/10.1016/j.physb.2021.413199
  4. Gunavathy KV, Tamilarasan K, Rangasami C, Arulanantham A. A review on growth optimization of spray pyrolyzed Cu2ZnSnS4 chalcogenide absorber thin film. International Journal of Energy Research. 2019;p. 1–39. Available from: https://doi.org/10.1002/er.4693
  5. Chang Y, Jialiang H, Kaiwen S, Steve J, Yuanfang Z, Heng S. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy. 2018;3:764–772. Available from: https://doi.org/10.1038/s41560-018-0206-0
  6. Zakaria OE, Mohammed A, Khakan AE. Reactive pulsed laser deposition of Cu2ZnSnS4thin films in H2S. Nanomaterials. 2020;10:1393. Available from: https://doi.org/10.3390/nano10071393
  7. Hanae T, Yousaf HK, Faisal B, Bernabe MS, Mohamed ET, Bouchaib H. Effect of complexing agent on the morphology and annealing temperature of CZTS kesterite thin films by electrochemical deposition. Current Applied Physics. 2019;19:606–613. Available from: https://doi.org/10.1016/j.cap.2019.03.003
  8. Macías-Cabrera CA, Campos-Álvarez J, Gamboa SA, Aguilar-Martínez JA, Méndez YP. Synthesis of CZTS thin films from binary precursors stacking by chemical bath deposition for solar cell applications. Materials Today: Proceedings. 2021;46:3109–3113. Available from: https://doi.org/10.1016/j.matpr.2021.02.624
  9. Jeganath K, Sajan DG, Murari MS, Raviprakash Y. Effect of sulfurization temperature on Cu-Zn disorder for non-stoichiometric spray pyrolyzed Cu2ZnSnS4 thin films. Materials Letters. 2021;300:130168. Available from: https://doi.org/10.1016/j.matlet.2021.130168
  10. Ramesh BM, Limbraj SR. Structure, morphology and optical parameters of spray deposited CZTS thin films for solar cell applications. Indian Journal of Science and Technology. 2020;13:2149–2156. Available from: https://doi.org/ 10.17485/IJST/v13i21.642
  11. Arslan A, Jolly J, Bano N, Un A, NM, Ahmad AA, et al. A two-step technique to remove the secondary phases in CZTS thin films grown by sol-gel method. 2019;45:10876–10881. Available from: https://doi.org/10.1016/j.ceramint.2019.02.165
  12. Ahmoum H, Chelvanathan P, Suait MS, Boughrara M, Li G, Ali HA, et al. Impact of preheating environment on microstructural and optoelectronic properties of Cu2ZnSnS4 (CZTS) thin films deposited by spin-coating. Superlattices and Microstructures. 2020;140:106452. Available from: https://doi.org/10.1016/j.spmi.2020.106452
  13. Reddy VM, Reddy PM, Reddy G, Sreedevi G, Reddy K, Babu P, et al. Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance. Journal of Industrial and Engineering Chemistry. 2019;76:39–74. Available from: https://doi.org/10.1016/j.jiec.2019.03.035
  14. Nagamalleswari D, Kumar Y, Kiran YB, Babu GS. Preparation and characterization of Cu2ZnSnS4 thin films by two-stage process. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. 2019;41:3001–3012. Available from: https://doi.org/10.1080/15567036.2019.1583294
  15. Nagamalleswari D, Kishore K, Kiran YB, Suresh BG. Effect of tin precursors on the deposition of Cu2ZnSnS4 thin films. Chalcogenide Letters. 2020;17:505–513.
  16. Vigil-Galan O, Espindola-Rodríguez M, Courel M, Fontane X, Syllad D, Izquierdo-Roca V, et al. Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high-power conversion efficiency. Solar Energy Materials & Solar Cells. 2013;117:246–250. Available from: https://doi.org/10.1016/j.solmat.2013.06.008
  17. Sachin RR, Yogesh AJ, Aleksandar Ž, Sagar BJ, Ganesh KR, Russell WC, et al. Solution-processed Cd-substituted CZTS nanocrystals for sensitized liquid junction solar cells. 2021;890:161575. Available from: https://doi.org/10.1016/j.jallcom.2021.161575
  18. Nagamalleswari D, Kumar Y, Ganesh V. Effect of substrate temperature on the growth of CuSbS2 thin films by chemical spray pyrolysis. Physica B: Physics of Condensed Matter. 2021;616:413119. Available from: https://doi.org/10.1016/j.physb.2021.413119
  19. Gurieva G, Guc M, Bruk MI, Zquierdo-Roca V, Rodríguez AP, Schorr S, et al. Cu2ZnSnS4 thin films grown by spray pyrolysis: characterization by Raman spectroscopy and X-ray diffraction. Physica Status Solidi C. 2013;p. 1–4. Available from: https://doi.org/10.1002/pssc.201200856
  20. Rajeshmon VG, Vijayakumar KP, Kartha CS. Effect of Cu and Sn concentration on the performance of all-sprayed CZTS solar cell. Journal of Physics: Conference Series. 2019;1461:15–19. Available from: https://doi.org/10.1088/1742-6596/1461/1/012181
  21. Khalate SA, Kate RS, Kim JH, Pawar SM, Deokate RJ. Effect of deposition temperature on the properties of Cu2ZnSnS4 (CZTS) thin films. Superlattices and Microstructures. 2017;103:335–342. Available from: https://doi.org/10.1016/j.spmi.2017.02.003
  22. Ynineb F, Khammar M, Guitouni S, Hafdallah A, Attaf N, Aida MS. Copper concentration effect on physical properties of ultrasonically sprayed Cu2ZnSnS4 absorber thin films for solar cell applications. Applied Physics A. 2021;127(2). Available from: https://doi.org/10.1007/s00339-021-04290-6


© 2022 Nagamalleswari & Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.