• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 26, Pages: 2644-2656

Original Article

Heat transfer characteristics of nocturnal cooling system for clear sky climate of Western Maharashtra, India

Received Date:20 May 2020, Accepted Date:14 July 2020, Published Date:30 July 2020

Abstract

Objectives: To investigate heat transfer characteristics of nocturnal cooling system in the Indian climate with suitable material for radiator and proper coating to enhance the heat transfer. Methodology: A nighttime radiative cooling system with aluminum radiator in a dry area, is assessed both experimentally and theoretically. A theoretical model has been proposed to evaluate the radiative cooling potential for the dry type climate of Western Maharashtra, India. However, the end result can be improved by a nighttime cooling system based on nocturnal longwave radiation, which cools the air below ambient temperature. Findings: The experimental room temperature could be maintained at about 2- 4.50C less than the outer room temperature. It is found that there is a huge scope in reducing the energy requirements for cooling purposes. Average radiative cooling rate of 55.84 - 71.88 W/m2 is achieved for without coating and 72.30 - 80.99 W/m2 for coating on the radiator. Novelty: In this study, we have designed and assessed the radiative cooling system which has a possibility of reducing the power using up for space cooling purposes. For achieving the building healthier and more comfortable, the building design is a key factor for saving energy and reducing emissions by considering nocturnal cooling design principles with suitable design and materials. The design of energy-efficient and sustainable buildings is important for the future.
Keywords: Radioactive cooling; nocturnal cooling; unglazed collector; flat-plate collector

References

  1. Kolokotroni M, Aronis A. Cooling-energy reduction in air-conditioned offices by using night ventilation. Applied Energy. 1999;63(4):241–253. Available from: https://dx.doi.org/10.1016/s0306-2619(99)00031-8
  2. Li Z, Chen Q, Song Y, Zhu B, Zhu J. Fundamentals, Materials, and Applications for Daytime Radiative Cooling. Advanced Materials Technolnologies. 2020;5. Available from: https://doi.org/10.1002/admt.201901007
  3. Nwaigwe KN, Okoronkwo CA, Ogueke NV, Ugwuoke PE, Anyanwu EE. Transient Analysis and Performance Prediction of Nocturnal Radiative Cooling of a Building in Owerri. Research Journal of Applied Sciences, Engineering and Technology. 2012;4(15):2496–2506. Available from: www.researchgate.net/publication/274066021
  4. Artmann N, Manz H, Heiselberg P. Climatic potential for passive cooling of buildings by night-time ventilation in Europe. Applied Energy. 2007;84(2):187–201. doi: 10.1016/j.apenergy.2006.05.004
  5. Simona PL, Spiru P, Ion IV. Increasing the energy efficiency of buildings by thermal insulation. Energy Procedia. 2017;128:393–399. Available from: https://dx.doi.org/10.1016/j.egypro.2017.09.044
  6. Kolokotroni M, Webb BC, Hayes SD. Summer cooling with night ventilation for office buildings in moderate climates. Energy and Buildings. 1998;27(3):231–237. Available from: https://dx.doi.org/10.1016/s0378-7788(97)00048-0
  7. Blondeau P, Spérandio M, Allard F. Night ventilation for building cooling in summer. Solar Energy. 1997;61(5):327–335. Available from: https://dx.doi.org/10.1016/s0038-092x(97)00076-5
  8. Parker DS. U.S. Department of Energy Theoretical evaluation of the NightCool Nocturnal radiation cooling concept. Available from: www.fsec.ucf.edu/en/publications/pdf/FSEC-CR-1502-05.pdf
  9. Bagiorgas HS, Mihalakakou G. Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renewable Energy. 2008;33(6):1220–1227. Available from: https://dx.doi.org/10.1016/j.renene.2007.04.015
  10. Hollick J. Nocturnal Radiation Cooling Tests. Energy Procedia. 2012;30:930–936. Available from: https://dx.doi.org/10.1016/j.egypro.2012.11.105
  11. Dobson RT. Thermal modeling of a night sky radiation cooling system. Journal of Energy in Southern Africa. 2005;16(2). Available from: https//doi.org/10.17159/2413-3051/2005/v16i2a3184
  12. Berdahl P, Fromberg R. The thermal radiance of clear skies. Solar Energy. 1982;29(4):299–314. Available from: https://dx.doi.org/10.1016/0038-092x(82)90245-6
  13. EH, Taherian H. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors. International Journal of Green Energy. 2012;9:766–779. Available from: https//doi.org/10.1080/15435075.2011.641189
  14. Sukhatme SP. Solar Energy Principles of Thermal Collection and Storage (2). Published by McGraw-Hill Publishing Company Limited. 2006.
  15. Tang R, Etzion Y, Meir IA. Estimates of clear night sky emissivity in the Negev Highlands, Israel. Energy Conversion and Management. 2004;45(11-12):1831–1843. Available from: https://dx.doi.org/10.1016/j.enconman.2003.09.033
  16. Anderson TN, Duke M, Carson JK. Performance of an Unglazed Solar Collector for Radiant Cooling”, Australian Solar Cooling 2013 Conference. Available from: https://core.ac.uk/download/pdf/56363619.pdf
  17. Berdahl P, Martin M. Emissivity of clear skies. Solar Energy. 1984;32(5):663–664. doi: 10.1016/0038-092x(84)90144-0
  18. Chabane F, Hatraf N, Moummi N. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater. Frontiers in Energy. 2014;8(2):160–172. Available from: https://dx.doi.org/10.1007/s11708-014-0321-y

Copyright

© 2020 Mulik, Kapale, Kamble. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.