• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 20, Pages: 1001-1011

Original Article

Hybrid Beamforming for Millimeter Wave Massive MIMO under Multicell Multiuser Environment

Received Date:14 January 2022, Accepted Date:11 April 2022, Published Date:06 June 2022


Objectives: Due to the high cost and power consumption of fully digital beamforming, the goal of this research is to thoroughly investigate Kalman-based beamformers in conjunction with existing beamformers for multicell multiuser scenarios. Methods: In this research work, Kalman based hybrid beamforming for millimeter wave massive MIMO along with existing linear beamformers has been investigated. Mathematical model for spectral efficiency has been developed for each linear beamformer under multicell multiuser scenario and the performance has been shown using MATLAB software. Findings: Simulation results show that all the beamformers perform better for multi-cell systems compared to single cell systems i.e. better spectral efficiency for a given signal to noise ratio has been achieved for multicell system. Simulation results also depict precoders spectral efficiency improved as the number of transmitting antennas increase and the number of users decrease for multicell multiuser scenario. Novelty: Expanding the kalman based beamformer that contains digital combiner for multicell multiuser scenario is the novelty of this research.

Keywords: Hybrid Beamforming; Massive MIMO; Millimeter Wave; Multicell; Multiuser


  1. Vizziello A, Savazzi P, Chowdhury KR. A Kalman Based Hybrid Precoding for Multi-User Millimeter Wave MIMO Systems. IEEE Access. 2018;6:55712–55722. Available from: https://dx.doi.org/10.1109/access.2018.2872738
  2. Nguyen NT, Lee K. Unequally Sub-Connected Architecture for Hybrid Beamforming in Massive MIMO Systems. IEEE Transactions on Wireless Communications. 2020;19(2):1127–1140. Available from: https://dx.doi.org/10.1109/twc.2019.2951174
  3. Yang B, Yu Z, Lan J, Zhang R, Zhou J, Hong W. Digital Beamforming-Based Massive MIMO Transceiver for 5G Millimeter-Wave Communications. IEEE Transactions on Microwave Theory and Techniques. 2018;66(7):3403–3418. Available from: https://dx.doi.org/10.1109/tmtt.2018.2829702
  4. Nalband AH, Sarvagya M, Ahmed MR. Optimization of Precoder and Combiner in mm Wave Hybrid Beamforming Systems for Multi-user Downlink Scenario. Journal of Applied Science and Engineering. 2021(2):257–265. Available from: http://dx.doi.org/10.6180/jase.202204_25(2).0002
  5. Du J, Wang Z, Zhang Y, Guan Y, Jin L. Multi-user hybrid precoding for mmWave massive MIMO systems with sub-connected structure. EURASIP Journal on Wireless Communications and Networking. 2021;2021(1):1–21. Available from: https://dx.doi.org/10.1186/s13638-021-02031-0
  6. Haqiqatnejad A, Kayhan F, Ottersten B. Robust SINR-Constrained Symbol-Level Multiuser Precoding With Imperfect Channel Knowledge. IEEE Transactions on Signal Processing. 2020;68:1837–1852. Available from: https://dx.doi.org/10.1109/tsp.2020.2978591
  7. Alraddady F, Ahmed I, Habtemicail F. Robust Hybrid Beam-Forming for Non-Orthogonal Multiple Access in Massive MIMO Downlink. Electronics. 2021;11(1):75. Available from: https://dx.doi.org/10.3390/electronics11010075
  8. Akhtar I, Li L, Yang F, Li X, Gao A, Chen W, et al. Energy Efficient Hybrid Precoding for Cooperative Multicell Multiuser Massive MIMO Systems with Multiple Base Station Association. 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC). 2018;p. 418–423. Available from: https://doi.org/10.1109/IWCMC.2018.8450379.
  9. Sun S, Rappaport TS, Shafi M, Tataria H. Analytical Framework of Hybrid Beamforming in Multi-Cell Millimeter-Wave Systems. IEEE Transactions on Wireless Communications. 2018;17(11):7528–7543. Available from: https://dx.doi.org/10.1109/twc.2018.2868096
  10. Mai R, Le-Ngoc T. Hybrid Precoder Design with MMSE-VP for Multi-Cell Massive MIMO Systems. 2018 IEEE International Conference on Communications (ICC). 2018;2018:1–6. Available from: https://doi.org/10.1109/ICC.2018.8422135
  11. Phuong NT, Son VV, Hiep PT. Combining precoding and equalization for interference cancellation in MU-MIMO systems with high density users. EURASIP Journal on Wireless Communications and Networking. 2022;2022(1):34. Available from: https://dx.doi.org/10.1186/s13638-022-02118-2
  12. Abose TA, Olwal TO, Hassen MR. Hybrid Beamforming for Millimeter Wave Massive MIMO under Hardware Impairments and Imperfect Channel State Information. 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC). 2021;p. 1–6. doi: 10.1109/ICMNWC52512.2021.9688468
  13. Zheng Z, Zhang J, Wu X, Liu D, Tian L. Zero-Forcing Precoding in the Measured Massive MIMO Downlink: How Many Antennas Are Needed? International Journal of Antennas and Propagation. 2019;2019(3):1–10. Available from: https://dx.doi.org/10.1155/2019/3518691
  14. Mostafa M, Newagy F, Hafez I. Complex Regularized Zero Forcing Precoding for Massive MIMO Systems. Wireless Personal Communications. 2021;120(1):633–647. Available from: https://dx.doi.org/10.1007/s11277-021-08482-4
  15. Huang Y, Liu C, Song Y, Yu X. DFT codebook-based hybrid precoding for multiuser mmWave massive MIMO systems. EURASIP Journal on Advances in Signal Processing. 2020;2020(1):11. Available from: https://dx.doi.org/10.1186/s13634-020-00669-4


© 2022 Abose et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.