• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 41, Pages: 2121-2128

Original Article

Hybrid Deep CNN Model for the Detection of COVID-19

Received Date:07 September 2022, Accepted Date:22 September 2022, Published Date:02 November 2022


Objectives: To propose a model which will pre-process the dataset for the removal of any noise before the training of the network. Methods: Reported literature does not focus on the pre-processing of the dataset before the training of the network. A noise removal scheme called Probabilistic Decision Based Adaptive Improved Trimmed Median Filter (PDAITMF) is implemented as a pre-processing tool before the developed model. The PDAITMF de-noises the dataset. Findings: This supports an effective learning process by the model. The model is trained, validated, and tested with the respective dataset. Accuracy of 0.9401 is achieved without the implementation of PDAITMF, while an accuracy of 0.9841 is achieved when the model uses the dataset processed by PDAITMF. Synchronization is also established between the training and validation graph which seems to be missing when the model uses the dataset without processing through PDAITMF. Novelty: A sharp improvement in accuracy is noted which establishes the effectiveness of the noise removal scheme before the Deep Learning model. The technique may be used to improve the detection accuracy of other acute diseases.

Keywords: Deep Learning; Transfer Learning; COVID19; Noise removal; COVID 19 detection


  1. Meena M, Vijayalakshmi A. The Struggle of India in COVID-19 Combat. Indian Journal of Science and Technology. 2021;14(25):2106–2110. Available from: https://doi.org/10.17485/IJST/v14i25.833
  2. Venkadapathi J, Govindarajan VK. COVID-19 outbreak: An overview and India’s perspectives on the management of infection. Indian Journal of Science and Technology. 2020;13(36):3716–3724. Available from: https://doi.org/10.17485/IJST/v14i38.996
  3. Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman JM, et al. Real-time forecasts of the COVID-19 epidemic in China from. Infectious Disease Modelling. 2020;5:256–263. Available from: https://doi.org/10.1016/j.idm.2020.02.002
  4. Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, et al. A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19) European Radiology. 2021;31(8):6096–6104. Available from: https://doi.org/10.1007%2Fs00330-021-07715-1
  5. Jain G, Mittal D, Thakur D, Mittal MK. A deep learning approach to detect Covid-19 coronavirus with X-Ray images. Biocybernetics and Biomedical Engineering. 2020;40(4):1391–1405. Available from: https://doi.org/10.1016/j.bbe.2020.08.008
  6. Nayak SR, Nayak DR, Sinha U, Arora V, Pachori RB. Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomedical Signal Processing and Control. 2021;64(102365). Available from: https://doi.org/10.1016/j.bspc.2020.102365
  7. Pandit MK, Banday SA, Naaz R, Chishti MA. Automatic detection of COVID-19 from chest radiographs using deep learning. Radiography. 2021;27(2):483–489. Available from: https://doi.org/10.1016/j.radi.2020.10.018
  8. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim OA, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine. 2020;121(103792). Available from: https://doi.org/10.1016/j.compbiomed.2020.103792.
  9. Jain R, Gupta M, Taneja S, Hemanth DJ. Deep learning based detection and analysis of COVID-19 on chest X-ray images. Applied Intelligence. 2021;51(3):1690–1700. Available from: https://doi.org/10.1007/s10489-020-01902-1
  10. Singh D, Kumar V, Yadav V, Kaur M. Deep Neural Network-Based Screening Model for COVID-19-Infected Patients Using Chest X-Ray Images. Int. J. Pattern Recognit. Artif. Intell. 2021;35(3). Available from: https://doi.org/10.1142/S02180014215100462151004-1
  11. Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access. 2020;8:132665–132676. Available from: https://doi.org/10.1109/ACCESS.2020.3010287
  12. Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. Journal of Magnetic Resonance Imaging. 2019;49(4):939–954. Available from: https://doi.org/10.1002/jmri.26534
  13. Ghadekar P, Singh G, Datta J, Gupta AK, Anand DS, Khare S, et al. COVID-19 Face Mask Detection using Deep Convolutional Neural Networks & Computer Vision. Indian Journal of Science and Technology. 2021;14(38):2899–2915. Available from: https://doi.org/doi.org/10.17485/IJST/v14i38.996
  14. Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognition Letters. 2020;138:638–643. Available from: https://doi.org/10.1016/j.patrec.2020.09.010
  15. Ayan E, Unver HM. Diagnosis of Pneumonia from Chest X-Ray Images Using Deep Learning. 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). 2019. Available from: https://doi.org/10.1109/EBBT.2019.8741582
  16. Basile C, Combe C, Pizzarelli F, Covic A, Davenport A, Kanbay M, et al. Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrology Dialysis Transplantation. 2020;35(5):737–741. Available from: https://doi.org/10.1093/ndt/gfaa069
  17. Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MUG, Khan K. Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. Journal of Travel Medicine. 2020;27(2):1–3.
  18. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV) Radiology. 2020;295(1):202–207. Available from: https://doi.org/10.1148/radiol.2020200230
  19. Cohen JP, Morrison P, Dao L. COVID-19 Image Data Collection. arXiv. 2020. Available from: https://doi.org/10.48550/arXiv.2003.11597
  20. Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine. 2020;43(2):635–640. Available from: https://doi.org/10.1007/s13246-020-00865-4
  21. Bielecka M, Bielecki A, Obuchowicz R, Piórkowski A. Universal Measure for Medical Image Quality Evaluation Based on Gradient Approach. Lecture Notes in Computer Science. 2020;12140:406–417. Available from: https://doi.org/10.1007/978-3-030-50423-6_30


© 2022 Sen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.