• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 26, Pages: 1975-1985

Original Article

Workability and Compressive Strength of Self-Compacting Geopolymer Concrete Blended with Industrial and Agricultural Waste

Received Date:22 April 2023, Accepted Date:17 June 2023, Published Date:04 July 2023


Objectives: To investigate the effect of replacement of Rice Husk Ash (RHA) on the workability and compressive strength of Self Compacting Geopolymer Concrete (SCGC) blended with Ground Granulated-Blast Furnace Slag (GGBFS) for sustainable environment. Methods: GGBFS as an industrial waste and RHA as an agricultural waste were used as an aluminosilicate source materials for the development of SCGC. Use of RHA is popular for their considerable effects on the mechanical as well as microstructural properties of cement based binders as well as geopolymer binders. The SCGC mixes were prepared by replacing GGBFS with RHA at various proportions of 5%, 15% and 25%. The fresh properties of SCGC have assessed through “Slump Flow, V- funnel, L-Box and J-Ring test methods as per EFNARC” guidelines. Findings: Partial replacement of RHA decreases the workability. Replacement of RHA in SCGC beyond 5% reduces the compressive strength, yet the target strength (30MPa) of all mixes were achieved. SEM analysis with EDXS spectra shows the dense microstructure of optimum mix with 5% RHA replacement. The 28 days strength of 42.6 MPa for 5% RHA, 39.31MPa for 15% RHA and 31.59 MPa for 25% RHA were achieved at ambient temperature, which is 110%, 94% and 56% higher than control mix strength (MF-100% FA) at ambient temperature. Novelty: SCGC is a new concrete which fulfill the properties of both Geopolymer (GPC) and Self Compacting Concrete (SCC). Most of the investigations in SCGC have been performed using Fly Ash, Metakeoline, and GGBFS as a binder. In this experimental study, GGBFS as an industrial waste and RHA as an agricultural waste are used as source material to develop the SCGC.

Keywords: Sodium Silicate; Sodium Hydroxide; Fresh Concrete; Rice Husk Ash; Microstructure; Self Compacting Geopolymer Concrete


  1. Rautarak SK, Bera DK, Rath AK. Sustainability of self-cured cementless self-compacting concrete using industrial waste. AIP Conference Proceeding. 2023;2740 (1):40005. Available from: https://doi.org/10.1063/5.0125977
  2. Cong P, Cheng Y. Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition). 2021;8(3):283–314. Available from: https://doi.org/10.1016/j.jtte.2021.03.004
  3. Rahman SK, Al-Ameri R. A newly developed self-compacting geopolymer concrete under ambient condition. Construction and Building Materials. 2021;267:121822. Available from: https://doi.org/10.1016/j.conbuildmat.2020.121822
  4. Ganasen N, Bahrami A, Loganathan K, Scientometric. Analysis Review on Agricultural Wastes Used as Building Materials. Buildings. 2023;13(2). Available from: https://doi.org/10.3390/buildings13020426
  5. Hossain SS, Roy PK, Bae CJJ. Utilization of waste rice husk ash for sustainable geopolymer: A review. Construction and Building Materials. 2021;310:125218. Available from: https://doi.org/10.1016/j.conbuildmat.2021.125218
  6. Somna R, Saowapun T, Somna K, Chindaprasirt P. Rice husk ash and fly ash geopolymer hollow block based on NaOH activated. Case Studies in Construction Materials. 2022;16:e01092. Available from: https://doi.org/10.1016/j.cscm.2022.e01092
  7. Gill AS, Siddique R. Durability properties of self-compacting concrete incorporating metakaolin and rice husk ash. Construction and Building Materials. 2018;176:323–332. Available from: https://doi.org/10.1016/j.conbuildmat.2018.05.054
  8. Sari AN, Srisunarsih E, Sucipto TLA. The Use of Rice Husk Ash in Enhancing the Material Properties of Fly Ash-Based Self Compacted Geopolymer Concrete. Journal of Physics: Conference Series. 2021;1808(1):012011. Available from: https://doi.org/10.1088/1742-6596/1808/1/012011
  9. Vishnu N, Kolli R, Ravella DP. Studies on Self-Compacting geopolymer concrete containing flyash, GGBS, wollastonite and graphene oxide. Materials Today: Proceedings. 2021;43:2422–2427. Available from: https://doi.org/10.1016/j.matpr.2021.02.142
  10. Thakur M, Bawa S. Self-Compacting geopolymer Concrete: A review. Materials Today: Proceedings. 2022;59:1683–1693. Available from: https://doi.org/10.1016/j.matpr.2022.03.400
  11. Method of Tests for Strength of Concrete. IS 516. 1959;p. 1–30.
  12. Das SK, Mishra J, Singh SK, Mustakim SM, Patel A, Das SK, et al. Characterization and utilization of rice husk ash (RHA) in fly ash – Blast furnace slag based geopolymer concrete for sustainable future. Materials Today: Proceedings. 2020;33:5162–5167. Available from: https://doi.org/10.1016/j.matpr.2020.02.870
  13. Mahdi SN, R DVB, Shashishankar A, Arunraj A. Influence of brick industrial rice husk ash on properties of ambient cured geopolymer mortar matrix. Materials Today: Proceedings. 2021;43:1160–1166. Available from: https://doi.org/10.1016/j.matpr.2020.08.609
  14. Sherwani AFH, Younis KH, Arndt RW, Pilakoutas K. Performance of Self-Compacted Geopolymer Concrete Containing Fly Ash and Slag as Binders. Sustainability. 14(22):15063. Available from: https://doi.org/10.3390/su142215063
  15. Buyondo KA, Olupot PW, Kirabira JB, Yusuf AA. Optimization of production parameters for rice husk ash-based geopolymer cement using response surface methodology. Case Studies in Construction Materials. 2020;13:e00461. Available from: https://doi.org/10.1016/j.cscm.2020.e00461
  16. Saloni, Parveen, Lim YY, Pham TM. Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: Strength and permeability properties. Construction and Building Materials. 2021;300:124321. Available from: https://doi.org/10.1016/j.conbuildmat.2021.124321
  17. Liang G, Zhu H, Zhang Z, Wu Q, Du J. Investigation of the waterproof property of alkali-activated metakaolin geopolymer added with rice husk ash. Journal of Cleaner Production. 2019;230:603–612. Available from: https://doi.org/10.1016/j.jclepro.2019.05.111
  18. Ganeshan M, Venkataraman S. Durability and microstructural studies on fly ash blended self-compacting geopolymer concrete. European Journal of Environmental and Civil Engineering. 2021;25(11):2074–2088. Available from: https://doi.org/10.1080/19648189.2019.1615991
  19. Yaswanth KK, Revathy J, Gajalakshmi P. Strength, durability and micro-structural assessment of slag-agro blended based alkali activated engineered geopolymer composites. Case Studies in Construction Materials. 2022;16:e00920. Available from: https://doi.org/10.1016/j.cscm.2022.e00920
  20. Bouaissi A, Li LY, Abdullah MMAB, Bui QBB. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Construction and Building Materials. 2019;210:198–209. Available from: https://doi.org/10.1016/j.conbuildmat.2019.03.202
  21. Nuaklong P, Janprasit K, Jongvivatsakul P. Enhancement of strengths of high-calcium fly ash geopolymer containing borax with rice husk ash. Journal of Building Engineering. 2021;40:102762. Available from: https://doi.org/10.1016/j.jobe.2021.102762
  22. Ng C, Alengaram UJ, Wong LS, Mo KH, Jumaat MZ, Ramesh S. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Construction and Building Materials. 2018;186:550–576. Available from: https://doi.org/10.1016/j.conbuildmat.2018.07.075
  23. Yaseri S, Verki VM, Mahdikhani M. Utilization of high volume cement kiln dust and rice husk ash in the production of sustainable geopolymer. Journal of Cleaner Production. 2019;230:592–602. Available from: https://doi.org/10.1016/j.jclepro.2019.05.056
  24. Farooq F, Jin X, Javed MF, Akbar A, Shah MI, Aslam F, et al. Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials. 2021;306:124762. Available from: https://doi.org/10.1016/j.conbuildmat.2021.124762


© 2023 Patel & Shah. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.