• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 37, Pages: 3121-3128

Original Article

Hybrid Machine Learning Based Recommendation Algorithm for Multiple Movie Dataset

Received Date:14 August 2023, Accepted Date:02 September 2023, Published Date:03 October 2023


Objective: The objective of this study is to design a machine learning based hybrid recommendation algorithm using Matrix Factorization and SVD to provide top – n movie recommendations. Methods: The proposed work is an integration of four well-known mechanisms namely Model-based Collaborative Matrix Factorization, KNN- based Clustering, SVD and Popularity based module to predict top-n recommendations. This work is implemented on movie-based datasets Movielens and tmdb-5000. The dataset is divided in 80: 20 for training and testing and we have used Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) performance metrics for evaluation of efficiency of proposed algorithm. Findings: The RMSE and MAE for the proposed hybrid model is 0.58 and 0.44 respectively. Novelty/Applications: The novelty of the work lies in two major aspects, firstly the linear ensemble of individual modules using popularity based, KNN based ,collabortiave MF and SVD and secondly the feedback evaluating mechanism which computes the relevancy of each recommendation generated. The proposed hybrid scheme focuses on user preferences and generates novel recommendations.

Keywords: kNearest Algorithm (KNN); Clustering; Matrix Factorization (MF); Singular Value Decomposition (SVD); Collaborative Filtering (CF)


  1. Gopal KS, Patro, Mishra SBK, Panda RK, Kumar, Hoang V, et al. A Hybrid Action-Related K-Nearest Neighbour ( HAR-KNN ) Approach for Recommendation Systems. IEEE Access. 2020;8(2020):90978–90991. Available from: https://ieeexplore.ieee.org/document/9091509
  2. Subramaniyaswamy NS, Viloria A, Senthilselvan VVN. A deep learning-based hybrid model for recommendation generation and ranking. Neural Computing and Applications. 2020;4:10719–10736. Available from: https://link.springer.com/article/10.1007/s00521-020-04844-4
  3. Mashhour I, Bellavista P, Corradi A, Foshcini L, Montanari R, Beerocal J, et al. A Pre-Filtering Approach for Incorporating Contextual Information Into Deep Learning Based Recommender Systems. IEEE Access. 2020;8(2020):40485–40498. Available from: https://ieeexplore.ieee.org/document/9004579
  4. Ngaffo AN, Ayeb WE, Choukair Z. A Bayesian Inference Based Hybrid Recommender System. IEEE Access. 2020;8(2020):101682–101701. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9104694
  5. Duong TN, Vuong TA, Nguyen DM, Dang QH. Utilizing an Autoencoder-Generated Item Representation in Hybrid Recommendation System. IEEE Access. 2020;8(2020):75094–75104. Available from: https://ieeexplore.ieee.org/document/9075162
  6. Dong B, Zhu Y, Li L, Wu X. Hybrid Collaborative Recommendation via Dual-Autoencoder. IEEE Access. 2020;8(2020):46030–46040. Available from: https://ieeexplore.ieee.org/document/9027867
  7. Cai X, Hu Z, Zhao P, Zhang W, Chen J. A hybrid recommendation system with many-objective evolutionary algorithm. Expert Systems with Applications. 2020;159(2020):113648. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0957417420304723?via%3Dihub
  8. Khan Z, Iltaf N, Afzal H, Abbas H. DST-HRS: A topic driven hybrid recommender system based on deep semantics. Computer Communications. 2020;156(2020):183–191. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0140366419304062
  9. Khant P, Tidke B. Multimodal Approach to Recommend Movie Genres Based on Multi Datasets. Indian Journal Of Science And Technology. 2023;16(30):2304–2310. Available from: https://doi.org/10.17485/IJST/v16i30.1238
  10. Bohra S, Bartere MM. Hybrid Recommendation Algorithm for Personalization of Customer Experience. 2022 IEEE 7th International conference for Convergence in Technology (I2CT). 2022. Available from: https://ieeexplore.ieee.org/document/9824545
  11. Pavitha N, Pungliya V, Raut A, Bhonsle R, Purohit A, Patel A, et al. Movie recommendation and sentiment analysis using machine learning. Global Transitions Proceedings. 2022;3(1):279–284. Available from: https://doi.org/10.1016/j.gltp.2022.03.012
  12. He H, Shang Z, Wu M, Zhang Y. Movie Recommendation System Based on Traditional Recommendation Algorithm and CNN Model. Highlights in Science, Engineering and Technology. 2023;34(2022):255–261. Available from: https://doi.org/10.54097/hset.v34i.5481
  13. Behera G, Nain N. Collaborative Filtering with Temporal Features for Movie Recommendation System. Procedia Computer Science. 2023;218:1366–1373. Available from: https://doi.org/10.1016/j.procs.2023.01.115
  14. Darban ZZ, Valipour MH. GHRS: Graph-based hybrid recommendation system with application to movie recommendation. Expert Systems with Applications. 2022;200:116850. Available from: https://doi.org/10.1016/j.eswa.2022.116850
  15. Salmani S, Kulkarni S. Hybrid Movie Recommendation System Using Machine Learning. 2021 International Conference on Communication information and Computing Technology (ICCICT). 2021. Available from: https://doi.org/10.1109/ICCICT50803.2021.9510058
  16. Farashah MV, Etebarian A, Azmi R, Dastjerdi RE. A hybrid recommender system based-on link prediction for movie baskets analysis. Journal of Big Data. 2021;8(1). Available from: https://doi.org/10.1186/s40537-021-00422-0


© 2023 Bohra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.