• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 38, Pages: 2934-2945

Original Article

Hyper-Heuristic Firefly Algorithm Based Convolutional Neural Networks for Big Data Cyber Security

Received Date:02 August 2021, Accepted Date:17 October 2021, Published Date:18 November 2021


Objectives: A highly accurate Intrusion detection model is developed that classifies both the network-based and host-based intrusions without any complexity issues. Method: An optimized Deep Learning (DL) algorithm of IDS model is presented in the form of a Hyper-Heuristic Firefly Algorithm based Convolutional Neural Networks (HHFA-CNN). This proposed HHFACNN reduces false values and improves accuracy without increasing the complexities. Findings: The proposed HHFA-CNN system is performed on two network traffic datasets: NSL-KDD and ISCX-IDS. The outcomes demonstrated that the proposed HHFA-CNN model gives predominant execution than the other existing models. Novelty: The proposed model has employed a novel Hyper-Heuristic Firefly Algorithm for optimizing the hyper-parameters of the CNN. This model maintains the standard guidelines of the firefly algorithm and applies the high-level technique for controlling the exploration and determination of low-level heuristics.

Keywords: Big data; Cyber security; Intrusion detection system; Hyper-Heuristic Firefly Algorithm; Convolutional Neural Networks


  1. Hu H, Wen Y, Chua TS, Li X. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial. IEEE Access. 2014;2:652–687. Available from: https://dx.doi.org/10.1109/access.2014.2332453
  2. Mahmood T, Afzal U. Security Analytics: Big Data Analytics for cybersecurity: A review of trends, techniques and tools. 2013 2nd National Conference on Information Assurance (NCIA). 2013;p. 129–134. doi: 10.1109/NCIA.2013.6725337
  3. Solms Rv, Niekerk Jv. From information security to cyber security. Computers & Security. 2013;38:97–102. Available from: https://dx.doi.org/10.1016/j.cose.2013.04.004
  4. Petrenko SA, Makoveichuk KA. Big data technologies for cybersecurity. CEUR Workshop. 2017;p. 107–111.
  5. Ullah F, Babar MA. Architectural Tactics for Big Data Cybersecurity Analytics Systems: A Review. Journal of Systems and Software. 2019;151:81–118. Available from: https://dx.doi.org/10.1016/j.jss.2019.01.051
  6. Ahmed M, Pal R, Hossain MM, Bikas MAN, Hasan MK. NIDS: A Network Based Approach to Intrusion Detection and Prevention. 2009 International Association of Computer Science and Information Technology - Spring Conference. 2009;p. 141–144.
  7. Deshpande P, Sharma SC, Peddoju SK, Junaid S. HIDS: A host based intrusion detection system for cloud computing environment. International Journal of System Assurance Engineering and Management. 2018;9(3):567–576. Available from: https://doi.org/10.1007/s13198-014-0277-7
  8. Yang Y, Mclaughlin K, Sezer S, Yuan YB, Huang W. Stateful intrusion detection for IEC 60870-5-104 SCADA security. 2014 IEEE PES General Meeting | Conference & Exposition. 2014;p. 1–5. doi: 10.1109/PESGM.2014.6939218
  9. Costa KAPd, Papa JP, Lisboa CO, Munoz R, Albuquerque VHCd. Internet of Things: A survey on machine learning-based intrusion detection approaches. Computer Networks. 2019;151:147–157. Available from: https://dx.doi.org/10.1016/j.comnet.2019.01.023
  10. Aswanandini R, MN. Multi-Objective Hyper-Heuristic Improved Particle Swarm Optimization Based Configuration of Support Vector Machines for Big Data Cyber Security. International Journal of Innovative Technology and Exploring Engineering. 2019;8(12):3892–3897.
  11. Sabar NR, Yi X, Song A. A Bi-objective Hyper-Heuristic Support Vector Machines for Big Data Cyber-Security. IEEE Access. 2018;6:10421–10431. Available from: https://dx.doi.org/10.1109/access.2018.2801792
  12. Safaldin M, Otair M, Abualigah L. Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing. 2021;12(2):1559–1576. Available from: https://dx.doi.org/10.1007/s12652-020-02228-z
  13. Lv L, Wang W, Zhang Z, Liu X. A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine. Knowledge-Based Systems. 2020;195:105648. Available from: https://dx.doi.org/10.1016/j.knosys.2020.105648
  14. Lopez-Martin M, Carro B, Sanchez-Esguevillas A. Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications. 2020;141:112963. Available from: https://dx.doi.org/10.1016/j.eswa.2019.112963
  15. Xiao Y, Xing C, Zhang T, Zhao Z. An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks. IEEE Access. 2019;7:42210–42219. Available from: https://dx.doi.org/10.1109/access.2019.2904620
  16. Riyaz B, Ganapathy S. A deep learning approach for effective intrusion detection in wireless networks using CNN. Soft Computing. 2020;24(22):17265–17278. Available from: https://dx.doi.org/10.1007/s00500-020-05017-0
  17. Li Y, Xu Y, Liu Z, Hou H, Zheng Y, Xin Y, et al. Robust detection for network intrusion of industrial IoT based on multi-CNN fusion. Measurement. 2020;154:107450. Available from: https://dx.doi.org/10.1016/j.measurement.2019.107450
  18. Nguyen MT, Kim K. Genetic convolutional neural network for intrusion detection systems. Future Generation Computer Systems. 2020;113:418–427. Available from: https://dx.doi.org/10.1016/j.future.2020.07.042
  19. Almiani M, AbuGhazleh A, Al-Rahayfeh A, Atiewi S, Razaque A. Deep recurrent neural network for IoT intrusion detection system. Simulation Modelling Practice and Theory. 2020;101:102031. Available from: https://dx.doi.org/10.1016/j.simpat.2019.102031
  20. Hsu CM, Azhari MZ, Hsieh HY, Prakosa SW, Leu JS. Robust Network Intrusion Detection Scheme Using Long-Short Term Memory Based Convolutional Neural Networks. Mobile Networks and Applications. 2021;26(3):1137–1144. Available from: https://dx.doi.org/10.1007/s11036-020-01623-2
  21. Zhang J, Ling Y, Fu X, Yang X, Xiong G, Zhang R. Model of the intrusion detection system based on the integration of spatial-temporal features. Computers & Security. 2020;89:101681. Available from: https://dx.doi.org/10.1016/j.cose.2019.101681
  22. Yang XS, He X. Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence. 2013;1(1):36. Available from: https://dx.doi.org/10.1504/ijsi.2013.055801


© 2021 Aswanandini & Deepa. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.